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Self-reciprocal Functions and Self-reciprocal Transforms®
By L. C. Hsu (Xu Lizhi #4):&

The principal object of this paper is to show that certain general classes of
self-reciprocal series transforms can be constructed by making use of analytic
functions ¢ (z) such that ¢(d(2)1=2. A brief analysis has been given of a kind
of self-reciprocal integral transforms by the aid of Widder’s inversion theory

for the Laplace-Lebesgue integral,

Introduction

By the so-called ¥self-reciprocal series transform” we mean a pair of self-

reciprocal formulas of the form
f(ny=3_.S(n,kygk) and g(n)=>_Sn,k)fk)
k k

where S(n,k) is called the kernel of series transformation, and {f(k)} and {g(k)}
are any iwo sequences of real or complex numbers connected by the inverse
series relations. It was found as early as in 1964 that certain classes of self-re-
ciprocal seies transforms as well as integral transforms can be constructed by
means of self-reciprocal analytic functinns (cf. (1],02),(33,04)). In this paper
we shall present a full development of the general technique proposed previous-
ly., A number of general theorems (a few of which were announced earlier)

will be proved and discussed in some detail,

§1 Real and Complex Self-reciprocal Functions

The term“self-reciprocal function” has been commonly adopted in the theory
of Fourier transforms, Here we shall employ the term with different meaning,
Roughly every function with its inverse equal to itself may be called a self-

reciprocal function. Precise definitions are given as follows,
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Definition | (Real case). Let A>0. We shall say that y=d¢(x) is a real
valued self-reciprocal function defined on (0,A) whenever the functional rela-
tion ¢ (y) =P (x))=x is valid for 0<<x<<CA, 0<<y<<A with ¢(0) =4 &(1) =0.

Definition 2 (Complex case). An analytic function w=¢(z) is said to be
self-teciprocal in a connected domain 2 in the complex z-plane whenever the
function ¢(w) is analytic for all the values w=¢(2) with z& &, and the reci-
procity relation ¢[(¢d(z)) =2z holds throughout &.

Evidently, for the real case the function graph of y=¢(x)(0<<x<{A) consists

of all those pairs of points (x,y)=(x,4(x)) and [v,¢(¥)]I=(y,z) that are sym-
metrical with respect to the line of symmetry y=x. This characteristic of the
graph suggests that one can exhibit or construct as many self-reciprocal func-
tions as one likes.
‘ Note that in Definition 2 it is unnecessary to assume that ¢(2) ¢ @) for z¢& &,
However, the functional relation ¢[(¢(2))=2z should imply that the relation
between z and w=¢(2) is that of a one-one correspondence. In particular, if
the reciprocity relation ¢(¢(z)]) =z is valid in such a domain & that ¢(z) € P
for z¢ &5, then & is called the domain of self-reciprocity for the self-reciprocal
function ¢ (z). Of course one can still consider the largest possible domain of
self-reciprocity for ¢ (z). However, for reciprocal series transforms we need only
the local formulation of the self-reciprocity of ¢(z). As a matter of fact, in
establishing certain general theorems for reciprocal series transforms one often
tequires only the analytic self-reciprocity of ¢(z) in a certain neighborhood of
=9,

Generally one can always find various self-reciprocal functions z’ =¢(z) by

solving various symmetrical equations of the form
F(z,2)=F (' ,z) =0,
Let us state here a few simple examples to illustrate this point,
Examplie 1. Consider the real symmetric equation
F(x,x')=4-€"-€"=0, O<x.x <log3),
Solving, we get the self-reciprocal function
x' =¢(x)=log(4~e"),

It is clear that ¢(x) decreases monotonically from log3 to (0 as x increases from
0 to log3. Hence [0,log3) may be taken as the valid interval for the function
obtained.

Example 2. Consider the complex-valued symmetric equation
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F(z,2/)=22 —a(z+2') -B8=0,

where @ and B are any two real or complex constants with a30 and B —a?l,
Solving the equation, we obtain

7 =¢(2) = (az+B)/(z—a).
This is a self-reciprocal function of z for |z|<p<<|e|, o being a fixed positive
number. In fact, it may be verified directly that ¢{¢(z)) =2z holds in the open
disk & (|z] <p).

In particular, taking e¢=1 and B=0. we obtain the simple self-reciprocal
function ¢(z) =z/(z2-1) in 2¥(|z]<<1). As may be verified at once, this function
has a domain of self-reciprocity containing a neighborhood of the point z=0 in
the complex plane,

It may be worthy of mention that one can always start from a given self-re-
ciprocal function ¢ (z) to generate a variety of self-reciprocal functions by means
of suitable substitutions of variables. A few immediate observations may be made
as follows:

1° If ¢(2) is a self-reciprocal function obtainable from a given symmetrical
equation, then so is y¥(2) =(¢(az+B) —B)/a with e+0, e and B being real or
complex constants, In fact, supposing 2z’ =¢ (2) come from an equation F(z,z")=

F(z’,z) =0, we see that
Faz+B, az +B8)=F(az’ +8, az+B8)=0

is also a symmetrical equation, which gives at once the self-reciprocal function
2 =(¢(az+B) —Bl/e. Sometimes, the particular case w=¢(2z)/a (a+#0) may be
found useful,

2° Generally, if 9 denotes a one-to-one (analytic) mapping with 6! as its
inverse, then it follows from the symmetrical equation

F(6(2), 6@ )H)I=F(0(z'), 6(z)I=0

that z/ =6 '¢(8(2)] is also a self-reciprocal function, This general substitution

rule applies to transforming various self-reciprocal functions,

§2 Self-reciprocal Transforms Constructed by
Analytic Self-reciprocal Functions
In this section we shall expound what a kind of self-reciprocal series trans-

forms can be built up by analytic self-reciprocal functions, The following rasult

was announced in an earlier abstract (2] without proof,
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Theorem 1. Let w=d¢(2) be an analytic function self-reciprocal in the open
disk |z|<<p(p<1) with |¢(0)|<<p and |$(2)|<1. Then we have the following
pair of self-reciprocal formulas

nig(ny =Y, f(YDI(P (DI =0» ey
k=10
mfn) = S g(kIDL (I o0 @

k=20

provided that either Y f(k) Ong(k) is convergent, where D" = (d/dz)"
0 0

(n=0,1,29"')'

Proof. Suppose that Zf(k) is convergent. iet us consider the series
[

G2 =Y_fkd(I* (Jz]<P),
k=0
It is readily shown that G(2) is uniformly convergent along every circle
|z] = p,<p. Indeed, the condition |@(2)]|<<1(]|z|<<p) implies that

max|¢(2)| <1, Lim(gp()I¥=0 for |z]=p,,

12{=py

Consequently we have

Yol @@ = (@@ =Y (o) ]t [1-d(2)] <2) |¢(2)] “<const.
B0 k=0 k=0
(lz] =pp).
Thus Abel's test affirms that the series G (2) converges uniformly for |z] =p;
Note that for each k(k=1,2,--) the functionl(¢(z))* is analytic in |z] <(p, so
that we have the convergent power series expansion

0

1
@)k = :\::_”T

(DB, g 02", (k=1,2,),

Thus the condition of the well-known Weierstrass double series theorem (cf.
Weierstrass (6] or T. J. Bromwich, Theory of Infinite Series, p. 266) are all

fulfilled for G(z), and consequently we obtain a power series expansion as follows

o

G =Y f(k) ()= "g(n)-z", (3)

k=0

where |z| <p, and g(n) (n=9,1,2,---) are given by

g(n) = ==Y f(R)DI (B () . (1bis)

k=0
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Now making use of the self-reciprocity of the function w=¢(z) we havez=
¢4 (W) with wEU, where U (in the complex w-plane) is the image of the open
disk |z] >p (in the complex z-plane). Clearly U is included in the unit circle
[w] <1 and contains the origin w=( as its interior point inasmuch as |$(0)] <P
and ¢ ($(0)) = 0.

Let us take in the w-plane a sufficiently small closed disk with center at
w=0, say V (|w|<6) such that ycyU. Obvicusly, the image of Vv, denoted by
6 (V), will be entirely included in the open disk |z] <Cp. Thus if we rewrite (3)
in the form

Fw)=Y_ g®)(p(w))i= Y fayw”, “@

k=0 n=0

'we may infer that the series F(w) on the left-side of (4) is also uniformly con-
vergent on V (|w| <<d). And consequently the Weierstrass double series theorem
does also apply to the double series F(w) (when each (¢(w))* has been expanded
in powers of w with |w| <4), so that we obtain in a similar manner

1

ST 8K DL(G W g (2bis)

k=0

f(n) =

‘This completes the proof.
Reémark The uniform convergence of the series G (z) may be verified by

the aid of Abel-Dirichlet’s test. Thus the convergence condition imposed upon

Y f(k) (ord g(k)) may be replaced by the following assumption
0 0

3 1f0) ~ fk+ D] <4, lim|fdo)] <a,

0
A being a positive constant.
A particular case of Theorem 1 seems to be interesting, and we may state

it as a corollary.
Corollary 1. For every analytic self-reciprocal function ¢ (z) with ¢(0)=0,

we have a pair of reciprocal relations as follows

ngm) = Y F(k)D: (D (2))H 4ugs 1
k=1
n f(n) = Y8R DD (2)H Lo ")

k=1
Correspondingly we have the orthogonality relation for n=mz=1,
D ($(0))* DYCION .
E ny * k! "6n.ma

k=m
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where D' (6(0)) =D (d(2))%_, and 6, , is the Kronecker delta.

In fact, the condition ¢(0)=0 implies that the self-reciprocal functiom
w=d¢(z) should take the form ¢(z)=2z+c,z*+-..- in a neighborhood of z=0., so
that we have

DI (P (D)), 0=0, (k=n+1,n+2,-),

It may be observed that the condition [¢§(z)| <1 involved in the hypothesis
of Theorem 1 may be removed. Actually we have the following theorem as an
immediate extension of Theorem 1. ‘

Theorem 2;: let ¢(2) be an analytic self-reciprocal function defined in
the open disk {z] <<r with [#(0)] <r. Let M be a positive constant such that

M=r, M> suplb(2)],

{zl<r

and let ¢(z) remain analytic for {z] <M. Then for the self-reciprocal function
Y(2) =¢p(Mz)/M we have the inverse series relations

nig(m) =Y FRIDI(WH()*], 0, (5)

koeoq

nyfni=S"gk)DIW())* o0, (6)

[

provided that at least one of the series >  f(k) andy g(k) is convergent.

Y 0

Proof. We have assumed that y(z) is analytic for [z|<(i. Now denote p=
r/M so that p<{1. By the maximum-modulus theorem we have for |z|<p,

W@ = I¢(MZI/M<§}{RI¢(MZ>J/M=18?1D o)/ M<1.

Moreover, we have [$(0)| = [#(0){/M < p. Hence Theorem 2 follows from Theorem
1 with ¢(z) being replaced by ¥(2).
Theorems 1 and 2 can be used as a tool for finding various special pairs of
self-reciprocal formulas. Let us now give a few simple examples as follows.
Exampl/e 1. Taking the simple self-reciprocal function ¢ (z) =z/(z-1)s (z
#1), we have ¢(0)=0 and

%(“%)"EZ‘(Z—U"‘JFO = <—1)‘(Z:1), (k=1,2,-).

Thus, applying (1) and (2) we find the pair of simple inversion formulas

n

) = _p"Tl k
50 = (=D~ )ido,

n

f(n) = 2<~1>*(::;)g<k>.

E=1
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This is the well-known pair for g-transform (cf. G. H. Hardy [53), Theorem 196>

Example 2. Taking ¢ (z) =T13 -z for |z| <é we have

<oy e =<,

N =

[b(0)] =-

IR

- the following reciprocal

Hence we obtain by means of Theorem | with p= /l

pair

c ok
378 = (- "L )3"‘f(k),
k-0 n
k

n

3= () s,

23

wheneveer(k) is convergent. This is known as the pair for ¢*-transform(alsc
1]

called Bernoulli-Euler’s transform).
Examplie 3. Let « and 8 be real parameters such that a0, 0<CB<L/(2 +a).
Define G(n,k;a,B) by the equation

F okt k—v—-1
Gakia, =) Yo,
ToNv/ Nk -1

Then we have the self-reciprocal pair

g(m) =3 (-D'Gn,ksa,p)fk), (7
k ¢l

fon =3 " (-D*G(n,k;a,B) gk), R
k=0

provided that either ) Jj(k) or Y  g(k) is convergent.
0 0

In this example we have to make the usual conventions for binomia!l coeffi-

cients:

(n__il)zo (n£0), (:}>:1, }(k_jl):o (k+0),

Actually this example follows from using the self-reciprocal function
w=¢(2) = (z+8)/(az-1)

defined in the open disk |z]<p=( -8 /(1 +2). The conditions of Thacorem f

may be verified for 2| <p,
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T F I L N B

1¢@2) = Hez| -1 ~1—-ap = 1+aB 7
e /,,,],W,_,"—f/(2+0!) ‘/1—3 _
[d(0) ! =p< yig = it L g TP

Meoreover, we easily find

D ( ZIZZ}B] ) k i

This is preciselyv(—-1)" G(n,k;e¢,B) and therefore(7) and (8) follow as a conse

ook +k—-v—1 )
= (-] ks"‘( ( )an‘v «-—v.
) ) = 'z;), k-1 B

ER

guence of Theorem i.

Theorem ] affirms that the reciprocal formulas (1) and (2) can be deduced
from the reciprocity relation w=¢@)—=3z=0(w) (. e. ¢ (¢ (2)) =2). However
we have not yet known whether the converse proposition is true or not. The
foltowing theorem may be regarded as having offered a partial answer to the
guestion just mentioned.

Theorem 3. Let w=¢(2) be a function analytic in the open disk |z|>p
(p=11)y with jd(0)|<p and |¢(2)|<1. Suppose that the reciprocal relations(i)and

(2) hold for all the ralated sequences {f(k); and {g(k)} with both {_: f(k) and
1]

Y g(k) being convergent. Then the function ¢ (z) must be self—-reciprocal in a cer-

0

tain neighborhood of z=.

Proof. In accordance with the proof of Theorem 1 we may write

G@=Y f(kyw'=Y gn) +z", (3 bis)

k=0 n=0
where jz] <0, w=¢(2) and g(n) is precisely given by (1). Notice that the assump-
tion (1)<=>(2) implies that the related sequences {f(n)} and {g(n)} contained
in (3 bis) can be exchanged in their places. Thus (3 bis) may be changed into
the form

S gkywi =Y fz,

k=10 n =1

where w=¢(z). But now this functional relation between two power series
should imply the relation z=¢(w) (|w|<p) in accordance with (3 bis). Hence
the reciprocity z=¢(¢$(2)) holds for z with {¢(z)| < o, and the theorem is proved.

As shown in the above theorem, the convergence condition imposed upon
both Z?‘f(k) and i‘g(k) seems t0 be too stringént. However, whether such a condi-

tion can be lightened or not is not known,
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Lo

In establishing a result parallel with Theorem 1 we may assume that w=¢(2)
is not self-reciprocal. Certainly in such a case one can only get a pair of reci-
procal (but not self-reciprocal) series relations. More precisely we have the fol-
lowing

Theorem 4. et w=¢(2) be a simple (schlicht) function defined for|z|<e
(P<<1) with |¢(0)|<<p and |¢(z)]|-Cl. Then for every sequence {f(k)' such that

> f(k) is convergent, we have the following pair or reciprocal formuias
v

nig(n) =Y f(k)DI(d ()], .y, (9>
k=0

nif(n) =3 g()DL W (@)} .., (10>
k-0

provided that z=1¢(w) is the inverse function of w=¢(2) with [$(0)]<p.

This theorem can be proved exactly in the same manner as that of Theorem
1. In fact, only the second part of the original proof has to be modified in
such a way that the inverse function should take the form z=y(w) instead of
Zz=¢(w) and that (2 bis) be replaced by (10).

As a particular case of Theorem 4 we have the following

Corollary 2. Suppose that the simple function w=¢(z) has the prop:rty
$(0)=0. Then (9) and (10) may be rewritten in the form

n

nlgn) =Y f(KYDI(d()*] .y, (9)
E=1t

nlfn) =73 g(k)DI W) .05 (10")
k=1

where n=1,2,3,-
Example 4. Taking ¢(z) =sinz and ¢(z) =log(l+z) we get at once the
following two reciprocal pairs

n

nlg(n) = Y F(K)DL(SINX) ] o,

~

-

I nlf(n) = Y g(k) D} (aresinn) .,
' k=1
and

nlg(n) =Y f(k)D}(1og(1 +x))*| .y,

k=1
nfm) = Y8RP = 1 4.
k=1

Here it is no real restriction to assume ¢(x)’s to be real functions of a real
variable;
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§3 Domain of Self—reciprocity for Analytic

Self—reciprocal Functions

Since the concept “domain of self-reciprocity” is so important for our
method of construction of self-reciprocal transforms, we give here a brief ac-
count of ir,

let & be a simply connected domain in the complex plane, and let ¢(z)
be a analytic function self-reciprocal in &, i. e. ¢(d(2)) =2z for 2zC G. Denote
by

S*=1{2/{2 =¢(,2¢ &}
the set of images of the function ¢(2), or in abbreviation, we may write &%
=¢(S). Then the intersection set =1 S* if non-void, will be called a
(local) domain of self-reciprocity for ¢(z). It is easy to prove the following

Proposition 1. For =61 6* with §*=¢(&) we have the identity
(D) =D

Proof. By definition we have @c:G and ZcS*. Thus it follows that

(D) d(Q)=6*, ¢(F) e (6*) =6.
Consequently we have
$(D)-6*NG6 =D
¢ (S (D) (D)= D.
But ¢(d( F)) = 2. Hence we may conclude that ¢( &) = &.

From the proposition just proved we may infer that every self-reciprocal
function ¢(z) can be trausformed into a new self-reciprocal function (z) such
that (0) = 0. As a matter of fact, the well-known fixed point principle applies
to the mapping ¢: ¢( D)= 2, so that there is a point £¢ & for which ¢(£) =£.
Let us now define

Y1) =(dlaz+ &) ~Eea, (a#0),
Evidently y(z) is self-reciprocal with () =0.

The so-called “complete domain of self reciprocity” for ¢(z) may be defined

as the largest possible domain _2J such that ¢( &)= 2. A more general definition
may be described as follows,

Given an analytic function z’ =¢(z), two points z, and z, in the complex
plane are said to be a pair of reciprocal points of ¢(z), if ¢(¢z) is analytic at

these points with z, =é(z,) and z, =¢(z,). Then the point set (non-empty set)
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2 consisting of all the reciprocal points of ¢(2) is called the complete domain
of self-reciprocity for ¢ (z).

Evidently in the above formulation for the complete domain _&J the corre-
spondence between z€ 9§ and z/ € &) must be one-to-one. The following simple
proposition may be inferred immediately from the definition given above,.

Proposition 2. The complete domain of self-reciprocity for an analytic
self-reciprocal function ¢(2) is the domain of analyticity of ¢(z) in the whole
complex z-plane, i. e. the z-plane without the singular points of ¢(2).

In what follows we give a few simple examples.

Example 1. The self-reciprocal function ¢(z) = —z takes the whole z-plane
as its complete domain of self-reciprocity.

Example 2. The self-reciprocal function ¢(z) =(az+8)/(z~a) (a, B being
complex constants with 3+ —«?) has the whole z-plane without the point z=g¢
as its complete domain of self-reciprocity.

Example 3. If in the self-reciprocal function w=z/(z~1) (z#£1) we re-

place zand w by vz and /w respectively, then we get another self-reciprocal
function

w=¢(2) = (*\/%z_l )2 = ?\;;E:‘lji, (z#1).
Here we have to assume that both .z and w (when inverted) take their
principal values, (i. e. z and w are lying on the first sheet of the two-sheeted
Riemann surfaces respectively), so that the monodromy of cach of the functions
w=¢(z) and z=¢(w) is still ensured. Evidently the self-reciprocal function so
constructed has the whole z-plane (or the first sheet of the Riemann surface)
without the singularity z=1 as its complete domain of self-reciprocity.

As regards the case ¢(z) being a many-valued function, the condition
(D) =9 for the domain of self-reciprocity of ¢(z) should be in general re-
placed by the weaker one, viz. ¢( Z) < 2@, However, since the definition of the
inverse function z=¢(w) (WC ¢ (D)) can always be extended to the domain P
by analytic continuation, we can still regard ¥ as the Jdomain of self-reciprocity
for ¢(z), Having adopted this convention, Proposition 2 may be generalized to
the case where ¢(z) is any many—valued analytic function defined on the
z- plane.

Example 4. Consider the self-reciprocal function

w=¢(z) =log(4—-¢€")

in the z - plane without the point z=log4. Obviously, this function can be made
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one-valued on the Riemann surface with infinitely many sheets joining the
branch point z=1og4. If we take the first sheet of the surface (or the z-plane
without z=1og4) as &), the set of images, ¢ (), is only a sub-set of &, i.e.
O (D). However, the domain of definition of z=log(4-¢*) can be readily
extended to the whole domain &j. Thus the complete domain of self-reciprocity

for ¢(z) is precisely the whole complex plane without z=1log4.

§4 Another Kind of Self—reciprocal Series Transforms

As having been noticed in  §2, the condition ¢(0) =0 imposed upon the
self-reciprocal function ¢ (z) may simplify the matter considerably. This is also
the case for the matter presented in our 1964 paper (1], In fact, the principal
result contained in (1) can be simplified and refined to the following form;

Theorem §. Let ¢(2) be an analytic self-reciprocal function with ¢(0) =0,
where z=0 is a simple zero of ¢(z) contained in a local domain of self-reci~

procity for ¢ (z). Then we have the pair of self-reciprocal formulas

nlgn) = ;Y;‘lkf (k)Dg‘lgzk--xi d)(zz) >"§'z=o’ a1y
nif(n) = kékg(k)p:*; 2 ¢<zz'>“),,”$l,=o, (12)

where n=1,2,3,+-.

As had been shown loc. cit.; the reciprocal relations (11)<=>(12) can be
established by making use of the well-known theorem of Biirmann and Teixeira
in the theory of analytic functions (c¢f. Whittaker and Watson (73, ch. 7, §7.
31). Clearly; Theorem 5 can also be employed as a tool to find a variety of

special inverse series relations,

§5 Self—reciprocal Transforms Constructed by

Real—valued Self—reciprocal Functions

The kernels of transformation considered in the preceding sections take the

forms

1 &

ArDIO@) ey Soub =rpie ()]

Sn,k)=
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These are built up by using differential operators, so that the self-reciprocal
function ¢(z) should be analytic. Is it possible to construct some kinds of
kernels using integral operators instead of differential operators? The answer to
this question is “yes”.

As a matter of fact, if we are using Fourier expansion instead of Taylor’s
expansion as employed in the proof of Theorem ], we shall find a new type of

kernels as follows:

o, (n,k) = %chos(nx) cos (ko (x))dx, (13
tdo

@, (n,k) = %J‘Jsin(nx)sin(kqﬁ(x))dx, (14)
4]

where n,k=1,2,3,--, and y=¢(x) is a real self-reciprocal function defined on
0<{x=<{m so that ¢(0) =n and ¢(x) =(0. Consequently we shall obtain two pairs

of self-reciprocal formulas of the forms

Lgm) =Y fR) D, (n k), (1)
! k=1
Ly =3 k). (11, k)3 (16)
\ k=1
and
g =Y fk@,(n k), an
. ko1
Cfoy =Y gdo®,(n k), (18)
: ke

Let us now establish the following
Theorem 6. Let y=¢(x) be a real self-reciprocal function defined on =2

x<m and let ¢”(x) be continuous there. Then we have the reciprocal formulas
(15) and (16), provided that both series S_:j_‘,f(k)kz and };_;.g(k)k2 are absolutely
1 1

convergent.
Proof. The function ¢”(x) continuous throughout [0,7), so is the function

2
(%—) cos (ko (x)) for every k(k=1,2,.--). Consequently cos(ké (x) can be expand-

ed into a convergent Fourier series

cos(kd (x)) = %bko + ‘z;‘]b“cosmx) 19
which converges absolutely and uniformly on (0,7). Here the Foutier coeffi-
cients b, as given by

bi. = ‘%5:%5 (k¢ (x))cos (rx)dx, (B=12:-)
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are easily estimated (in particular |b,|<2). Indeed, twice application of inte-
gration by parts gives b;,, = O(k?/n*) (n—>+co) where the absolute constant
implied by O¢(+) is independent of k and n.

Let us assume that > f(k)k* converges absolutely. Consider the absolutely
1

convergent trigonometric series (with y=¢(x))
F(y) =Y f(k)cos(ky) =3 f(k)cos(kd(x)), 20
[ k=1
where F(y) is itself a Fourier series in 0<{y<{r with j F(y)dy = 0.
0
Now substituting (19) into the right-side of (20), we get

F@() = 3250 §5 b+ D bcos nx) |

k=1 *=

-

=3 Y, fk)b,,cos(nx) + By,

Ll
k=1 mn=]

where the constant B, is given by
- Lyt ion
By = 2~‘f< ) ko=
k=1

Note that the order of summation of the double series derived above can be

raversed inasmuch as there is an absolute constant M such that

|2 S f0bicos ) [< 30 S50 | bl
b=t k=1

no=1 n=1

<M<§ £ ko) | k)(Z‘ 1/;12)< 4 oo,

o=

Thus we may express F(¥)=F(¢(x)) as a convergent cosine series in X,

F(d(x)) =Y g(mcos(nx) + By (0<<x<1)

n=1
with g(n) being given by
g(n) =3 )b, = S f(k)D,(n.k). (15 bis)
k=1 k==t

Now suppose that 3 'g(k)k* also converges absolutely. Then starting with the
I

cosine series for FLO(x)I=F{é(d(¥)I}=F(¥) we find in an entirely like man-
ner

© 1995-2005 Tsinghua Tongfang Optical Disc Co., Ltd. All rights reserved.



#2341 L.C.Hsu: Self-reciprocal Functions and Self-reciprocal Transforms 133

F(¥)= Y g(k)cos(kd (¥)] + By

k=1

= Zf(n)cos(ny) + B, + By

n =]

where f(n) is given by

fny =3 g(k)b, = Y (k). (1, k),

k=1 k=1

and the constant B, is easily found to be

8= |t - Bay= 1| F»dy-Bi= - Bo

so that B, +By=0, conforming with the original definition of F(y) as given by
(20). Hence the theorem is proved by (15 bis) and (16 bis).
Recall that ¢(0)=x. ¢(x) =0, so that sin(k¢(0)I =sin(k¢(x)1=0. Thus if

we expand sinfkd(x)) into a convergent sine series

sinfkd(x)1 =3 a,sin(nx), (0<x<m)

n=1

with the Fourier coefficients a,, being given by

a,= %j-:sin[kqb (x)Jsin(nx)dx,

we can again obtain an estimate for |a,,| by integration by partsi indeed, we
have

T

5 a, = %@—j:cos(nx)—% sin(k¢(x))dx

= - n]"J n“““””(*ﬁ?)zsinckmxndx =0(k?/n?), (n->co).
0

This ensures that the process for justifying (i15)<=>(16) may also be used(with
minor modifications) to yield a proof of the following.

Theorem 7. With the same hypotheses as that of Theorem 6 we have the
reciprocal formulas(17) and (18), provided that ij(k:)k2 and i}g(k)k2 are abso-
lutely convergent series.

Finally, let us close this section with an open problem as follows: Given
a self-reciprocal function ¢(x) on [0,x), is it possible to establish the reci-
procal relations (15)<==>(16) and (17)<=->(18) under some weaker conditions than

those of

" (X)E Cro v 21 FR) K<<+ o000 3 |8(K) [k* <+ o0?
1 i
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§6 A formal Process for Obtaining Self-reciprocal

Series Transforms

The basic idea employed in deriving self-reciprocal relations (15)<=>(16)
and(17)<==>(18) can be generalized. Let y=d¢(x) be a real self-reciprocal func-
tion defined on [0, AJ). Suppose that {®,(x)} is a complete orthonormal system
of functions defined on [0, AJ and that each o,(¢(x)) can be expanded into an

absolutely convergent series (generalized Fourier series) of the form
O (d(x)) =Y c,,0,(x), 21
n =0

where the Fourier coefficients c,, are determined by the inner products
ckn = (wk(q,)(x))’ wn(x))' (22)
If for a given sequence {f(k)} satisfying certain conditions we may derive for-

mally

Y fkyo,(v) =Y fk)o(d(x))
k=0 k=g

=Y. f(k)(ch,L-w"(x)) =Y 8(n).o,(x),

k=0 n= nes{

where the order of double summation is assumed reversible so that g(n) is given
by
g(n) =Y c.,»f(k), (23)
k=20

then we may obtain in a like manner

Yle(mye,(x) =Y 8(k)o (d(¥)) =) f(ne, (y)
k=0 n=0

n=0
with f(n) being given by
f(n)= 2%,"8(’0)- (24)
k=0
This shows the self-reciprocal pair (23)<=>(24) may be derived from (21) and
(22) under suitable conditions,
Apparently the most important step of derivation to be justified is that of

reversing the order of summations in the double series

3 f(k)e,,w,(x) and 3 3 g(k)c,,0,(x).
k n

deraad e
k n

Generally this may be verified for special systems {@w,(x)} and suitably restricted

sequences {f(k)} and {g(k)} with an appropriate estimate for |c,,|.
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§7 A Kind of Self-reciprocal Integral Transforms

The essential idea employed in establishing the self-reciprocal formulas (1)
and (2) can be equally effectively applied to constructing a kind of self-recipro-
cal integral transforms. What we shall give below is merely one of possible
analytic processes that can lead to szlf-reciprocal integral transforms or the like,

In what follows we always assume that y=d¢(x) is a real-valued function
self~reciprocal on 0<<x<C1 and infinitely differentiable in 0<<x<C1. Let f(x) and
g(x) be two real functions Lebesgue integrable on (0, o), i. e. fEL(0, o) and
g2EL(0» o0). Suppose that f(x) and g(x) are related by the following equation

Fwy=] feds= [ gy ds (25)
where t2=0. Note that ¢(0)=1, ¢#(1) =0 and [d(x)]<<l (0<<x<1), so that we

may denote e *=d (e (tz=(). The self-reciprocity of ¢ gives
e =d(d(e™)) =d(e™).
Thus (25) is equivalent to the equation
Gy =] 1(s)(bee))ds = | gs)eds. (26)
Clearly the Laplace integrals appearing in (25) and (26) are both uniformly

convergent and absolutely convergent for all t>=0 and u>=0, respectively, since
fEL and g& L.
Let us now apply the well-known Post-Widder inversion operator to the left-
side of (25), obtaining
~ 1" m m \"+1 .
f(u) = tim LT F("‘)( ----- )(-) (0L o0)s

my u

m—sod

where the inversion operation may be written as f= ¥ "' (F).
In accordence with wWidder we may denote for simplicity

( i.ljf”.,( m

may "
fn! u ) D;F(t) i::—(m/u)’

L;uEF<t)j£ )
so that the inversion operator & ! is defined by
f-l(F) =‘1imLm,‘nEF(t)j'

Consequently we may infer from (25) and (26) the following inverse relations

f(u)=$“(F)=f“‘“:8(8)(¢(6"))“d8§, D

gu) =L 1 (G) =L J:f(S)(¢(e"))st§. (28)
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Since the Laplace integrals expressed by (25) and (26) can be differentiated
under integral sign (with respect to t >0 and u >0 respectively), we see that
the operator &~ ! may be placed under integral sign, Thus from (28) and (27)
we may derive a pair of self-reciprocal relations as follows

g(u) =limJ:H(s,u;m)f(s)ds, (29)

n >0

f(u) = limJWH(s,u;m)g(s)ds, 30
m—wv 0
where the kernel H(s,u;m) of integral transformation is defined by
(=17 ¢ m \"+1y d \" —iyns
HGsyuymy = () (g ) @@ i

my

or, in abbreviation,
H(s,usm) = Ly, ,({d(e7*))"], (31)

However, all what given above is merely a formal deduction. We shall now
investigate some conditions under which the validity of the above deduction
can be guaranteed. Given ¢ and f with fC L{0, «0), we have to show that the
integral equation (25) has a unique solution g(s). Notice that (26) is equivalent
to(25), so that asserting the existence of g(s) € L(0, o) is equivalent to affirm-

ing that the integral
G(u)sj':ﬂs)w(e-“))’ds

can be represented as a Laplace-Tebesgue integral involving g(s) as its deter-
mining function., Evidently a well-known representation theorem of widders
(cf. (8] chap. 7, §17) applies to the present case.

According to Widder, a funciion #(t) is said to satisfy “Condition D”, if
the following 3 conditions are fulfilled:

(1) ¥(t) is infinitely differentiable in (0, o) with y(c0) = 0;

(2) for every positive integer m, the function L, [¥(¢)) is Lebesgue inte-
grable, i. e,

[ 1L (0T |+ oo
(3) the sequence {L,  (#(t)]} converges in mean with index one, i. e.

1imJoL,,,,u[yb] ~ L, () du=0.

> en
n-»o0

Now suppose that G(v)zj(}f(s)(qﬁ(e‘”))fds satisfies Condition D. Then Wi-

dder’s representation theorem ((8), Theorem 17, p. 318) affirms that there is a
function g(s) & L(0, co) such that
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G (v) =j:g<s)e*”ds. (32)

This ensures that both (26) and (25) are valid, and consequently we have (27)
and (28). More precisely, widder’s inversion theorem imp ies that the recipro-
cal relations (27) and (28) do hold for all values u>b belonging to the Lebesgue
sets for f and g, respectively. Summing up, we have the following.

Theorem & 1iet ¢(x) be a self-reciprocal function defined on {0, 1] and
having derivatives of all orders in (0, 1). Let H(s, u;m) be defined by (31).
Then for every f(s) € L(0, co) such that the function G(t)sjjf(s)w(e“))'ds sa—
tisfies Condition D, we have self-reciprocal relations (29) and (30) which are
valid for all positive u in the Lebesgue sets for g and f respectively.

Example. Take two simple self-reciprocal functions

Y=¢,(x)=1-% y=¢,(x)=(1-x)H", (O<x<1),

Correspondingly we get two kernels as follows

(-n- mo\m+l_ e
H1(3,u;m)=""’”n;f*‘( ” ) DT(1=€") ] tatmus

("' l)m m "l - s
Hz(s,u;m)': 'm! ”‘( © ) D’f(l_e 2') /2|¢=(m/u).

As a final remark it may be worthy of mention that self-reciprocal relations
can also be obtained by making use of Fourier transforms instead of Laplace
transforms, For instance, suppose that y=¢(x) is a self-reciprocal function
defined on (- oo, oo) with ¢(—-o00)= +0c0, ¢(+0)=—co, We may consider a

pair of equivalent equations as follows
F(x)zjjj(s)cos(sx)ds:J:g(s)cos(s:b(x))ds,
G(y)EI:f(s)cos(S¢(y)>ds=j:g(8)cos(sy)d3.

Certainly we may apply Fourier inversion formulas to the above equations

with suitable restrictions upon f or g, thus arriving at a pair of self-reciprocal

relations
= f(u)—;‘;- wcos(ut)dt J:g(s)cos(qu(t))ds, (33)
0
s =2 coscutrat | RICEECIOMS EN

Obviously this kind of reciprocal relations may be regarded as an integral ana-
logue of (15) and (16), and the reciprocity (33)<==>(34) can only be established
for special classes of functions {f} and {g}. Detailed discussion may be left to

the interested reader.
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