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BROWNIAN MOTION ON THE LINE'

K. L. Chung

(Stanford University; U.S.A.)

Introduction

These lecture notes are based on a short course given in the fall of 1979,
The audience consists of graduate students from several departments and some
faculty auditors. They are supposed to know the elements of Brownian motion
including the continuity of paths and the strong Markov property. as well as
elementary martingale theory. The emphasis is on methodology and some inculcation
is intended.

In this lecture{X(t), t:=0} is a standard Brownian motion on R= (— oo, + ),

§1. Exit and Return

Let (a, b) be a finite interval and put

(1) T=Tpn=inf{t>>0 ¢ X (@) € (a; b) }.
This is called the [first] exit time from (a, b). If x¢ [a; b], then clearly
(2) p*{r=0}=1

by the continuity of paths. If x=a or x=>b; the matter is not so obvious because
the inf in(1) is taken over t>>(0; not t>(, Starting at g, it is conceivable that the
path might move into (@, b) without leaving it for some time. It is indeed true that
(2) holds for x=a and x=b but the proof will be given later. Our immediate
concern is: if the path starts at x; where x € (a;b); will it leave the interval
eventually?
We have the crude inequality
(3) sup px{r>1}<xes(gp“p"{>t(1)E(a,b)}.

Xefa, b)
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The number on the right side can be expressed in terms of a normal distribution,
but it is sufficient to see that it is strictly less than one. Denote it by §. The next
step is a basic argument usmg the Markovian character of the process. For any
X€ (@ b) and nz=1: ’ ’
(4) ' X{r>ﬂ}<E"{r>"~1; p* "1k <p*{t>n~ 1}

In the above we have adopted the notation commonly used in Markov processes. It
symbolizes the argument that if the path has not left (a, b) at time n-1, then
wherever it may be at that time, the probability does not exceed § that it will
remain in (a, b) for another unit-of ‘time. It follows by induction on n that

(5) pH{r>n} <"

Since §<1 we obtain p*{t=co}=( by letting n-»co. This answers our question:
the path will (almost surely) leave the interval eventually:

(6) p*{rlec} =1,

In fact the argument above yields more. For any & such that 0<e< 1/¢, we have

7) EX{e} <Y e p¥{n-1<r<n} <) e"¢" < e,

=1 n=1

In standard terminology this says that the random variable t has a generating

function EX*{e®*} which is finite for sufficiently small values of . In particular
it has finite moments of all orders.

At the exit time 1, x(%) =a or x(1) =b by continuity. For any x € (- <o, <),

let us define

(8) Tx =inf{t>0 2 x(t) =x},
This is called the hitting time of the set {x}, It is clear that
(9) uvb) T/\Tbo

If we keep b fixed while letting a-»—cc, then
(10) lln}‘[usb) Tb-

It is ‘worthwhile to convince oneself that (10) is not only intuitively obvious but

logically correct, for a plausible argument along the same line might mislead from

(6) and (10) to:
(11) ' : T, <o} =1,
~The result is true but the argument above is fallacious !’ and its refutation is left
as Exercise 1 below. We proceed to a correct proof,
Proposition 1, For every x and b in (—occ, o), (11) is true.
Proof, For 51mp1101tx of notatlon we suppose x=( and b= +1, let a= -1

in (7). Since the Brownian motion is symmetric with respect to the directions
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right and left on the line, it should be clear that at the exit from (-1, +1), the
path will be at either endpoint with probability 1/2. If it is at +1, then it hits
+1. If not, the path is at —1, and we consider its further movement until the
exit from (-3, +1). According to the strong Markov property this portion of the
path is like a new Brownian motion starting at — 1, and is stochastiéally independent
of the motion up to the hitting time of — 1. Thus we may apply (7) again with
Xx=-1, a= -3 and b= +]1. Observing that -1 is the midpoint of (-3, +1), we
see that at the exit from the latter interval, the path Will be at either endpoint with
probability 1/2. If it is at +1, then it hits +1. If not, the path is at —3; and we
consider its further movement until the exit from (-7, +1), and so on, After n
such steps, if the path has not yet hit +1, then it will be at —~ (2" ~1) and the
next ihterval for eXit to be considered is(- (2°*!' ~1), +1). These successive trials
(attempts to hit + 1) are independent, hence the probability that after n trials the

path has not hit +1 is equal to (%)“. Therefore the probability is equal to

lim(%)":o that the path will never hit +1; in other words the probability

n->o00

is 1 that it will hit +1 eventually.

The scheme described above is exactly the celebrated gambling strategy called
“doubling the ante.” [The origin of the name “martingale”.] The gambler who is
betting on the outcome of tossing a fair coin begins by staking $1 on the first
outcome, If he wins he gets §1 and quits. If he loses he flips the coin again but
doubles the stake to §2. If he wins then his net gain is $1 and he quits. If he loses
the second time he has lost a total of §3. He then repeats the game but redoubles
the stake to $4, and so on. The mathematical theory above shows that if the game is
played in this manner indefinitely, the gambler stands to gain §1 sooner or later.
Thus it is a “sure win” system, the only drawback being that one needs an infinite
amount of money to play the system. To get a true feeling for the situation one
should test the gambit by going to a roulette table®’ and bet repeatedly on “red or
black”, which is the nearest thing to a fair game in a casino.

There are many other proofs of Proposition 1, of which one will be given soon in
§2. The proof above is however the most satisfying one because it reduces the problem
to an old legend: if a coin is tossed indefinitely, sooner or later it will be heads!
Exercise |, What can one conclude by letting a— — oo in (§) while keeping x
and b fixed? Figure out a simple Markov process (not Brownian motion) for which
(6) is true but (11) is false.

Exercise 2, Show that (11) remains true for x=5b, a moot point in the proof
given above.
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§2. Time and Place

The results in §1 are fundamental but qualitative. We now proceed to obtain
quantitative information on the time T and the place x(t) of the exit from (a,b).

et us define
p. (%) =p¥{x (1) =a} =p*{T,<T,};

p, (%) =p*{x(v) =b} =p™{T,<T,}.
It is a consequence of (1,7) that

(2) p.(x) +p,(xX) =1, vXE(a, b),

In order to solve for p,(x) and p, (x) we need another equation. The neatest way

(1)

is to observe that the Brownian motion process is a martingale, More pedantically,
let F, be the o-field generated by {x., 0<<s<(t}, then for each x&R:

S
(3) {x,, F,, p*} is a martingale.

We leave the verification to the reader. The fundamental martingale stopping
theorem then asserts that

4) {x@gAD, FAAT), p*} is a martingale,
The defining property of a martingale now yields
(5) EX{x(0)}=E*x(AD}.

The left member above is equal to x; the right member is an “incalculable” quantity.
Fortunately we can easily calculate its limit as t-»oc. For almost every sample
point @, 7(0) <oco by (1,6) and tA\T(w) =1(0) for t==1(n), hence lim x(tA1) =x(1)
without even the continuity of x(+). Since o

(6) sup |[x(AD|<]a|\/|b],

LR
the dominated convergence theorem allows us to take the limit as t-»co under the
EX in (5) to conclude
7) x=E*{x(1)}.
The novice must be warned that the wverification of domination is absolutely
de rigueur in such limit—taking, neglect of which has littered the field with
published and unpublished garbage. [On this particular occasion the domination is
of course trivial, but what if T is replaced by T, for instance’]

Since x(1) takes only the two values a and b, (7) becomes

(8) x=ap,(X) +bp,(x),
Solving (2) and (8) we obtain
_b-x _X-a
(9) p“(X)_B_:?i' pb(x)""b‘:bs XE(G, b).
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Note that (9) is valid only for x<[a, b], and implies p,(a) =1,

To obtain E*{t} we use anothér important martingale associated with the process:
10 {x®)y2-t, F,, p*} is a martingale,
Application of the stopping theorem gives
X*=EX{X(T At} ~ (1D ],
Since x(1/\t)2<<a® +b? and E*{1}<co (see §1) we can let t—»co and use dominated
convergence (how? ) to deduce

a1 x?=E*{x(1)* -1} =a’p,(x) +b*p,(x) — EX{7},
Together with (9) this yields

(12) EX{T(a. y)} = (X"'a) (b-——X) 1

for all xc[a, b]. For x=a we have E*{t, ,,}=0, so p {1, ,,=0}=1,

From the last result it is tempting but fallacious to conclude that p*{T, =0} =1.
In the next exercise we give a correct proof of this fact using the symmetry of
Brownian motion, leaving the details to the reader.
Exercise 3, Prove the fundamental result

13) p*{T,=0}=1, for all XER.

We may take x=¢. Define T~ =inf{t>( ¢ x(t)<{0} and T*=inf{t>0 3 x()>0}.
From the results above deduce p°{T-=¢0}=1and p°{T" =0} =1; hence p°{T,=¢0}=1.
Exercise 4, Show that starting at any x, the Borwnian path immediately
crosses the x-level infinitely many times.

Exercise 5, Show that for any x+b we have E*{T } = + oo,

Exercise §. let x,—>x, then p*{T, »>0}=1.

Exercise 7, let v=1, ,, and t>(. Show that ¢ is concave in [a,b] and hence

continuous. Let x,, X,, X [a, b] with x=(1-})x; +:X,;. [et 1/ =7, Check

that p,(x,) =1~} and p, (x,) =), so it follows from the strong Markov propetty
that

M= -, FAP(X,).

Exercise 8, Use Exercise 6 and symmetry to show that for each t the maximum
of p*{*>>t} occurs at x= (a+b)/2.
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§3, A General Method

To obtain comprehensive information regarding the joint distribution of the
time and place of exit from (a, b), we introduce a more powerful martingale.
Proposition 2, For any real value of the parameter a,

2
(1) {exp(ax(t) - ~—a;—t~) , F,, p*} is a martingale,
Proof, We begin with the formula

alt

(2) E*{exp(ax(t))} = exp(ax + 5 ).

The left member above being the probabilistic manifestation of the analytic formula

= 1 (X-y)*
j_we yt/vé;?exp{— . ”Zt } dy

its calculation is an exercise in beginner’s calculus. When ¢ =i9 where i=+" -
and o is real, (2) should be recognized as the familiar Fourier transform or
characteristic function of the normal distribution commonly denoted by N(x,t). It
follows that if (<<s<'t then 4 '

2
(3) Ex{exp(ax(t)w—%[—-) | Fs}

2
= exp(ax(s) ——‘—z»zi)E"{eXD (ax (t) —x(8)) |F;},
To be formal about it this time, let us put

X W) =X(s+u) =X(s), for u.=0;
Since the Brownian motion is a process with stationary independent increments, the

“shifted” process x is a standard Brownian motion which is independent of F,.
Using (2) we have
EXexp(@(X () ~X() [P} =E* {exp@x (=)} =exp( (7 ),

which confirms the assertion in (1),

For a few moments let us denote the martingale in (1) by M(t). Then for
every X¢& (a, b):
(4) e*=EX M@ }=EX{ME/ 1)},
where t=17,, ,,. Since

IMUAT) | <cexp(le] (Jal A\ ]b])) .
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we obtain by dominated convergence just as in §2 that

6X — X — EX a’t . = Xy a‘rt =
(5) e*=EX{M@)}=E {exp(aa——7—f~),X(T)—0}+E 1€XD(0b-—2~); X (1) =b},

Putting
(6) f.00 =EMexp(= £ T); X =a),
2.

fo (%) =EX{eXp(—5§f-);X(r) =b},
we have the equation
(7) e* =e"f, (x) +ef,(x), Xe (a,b),
We have also the equation

2

(8) fo(x) +fb(X)=E"{eXp(—f~.-21)}.

Unlike the situation in §2, these two equations do not yield the three unknowns
involved. There are several ways of circumventing the difficulty. One is to uncover
a third hidden equation-—the reader should try to do so before peeking at the
solution given below?®’, But this quickie method depends on a lucky quirk. By
contrast, the method developed here, though much longer, belongs to the mainstream
of probabilistic analysis and is of wide applicability. It is especially charming in
the setting of R!.

We begin with the observation that if x is the midpoint of (a, b) then
f,(x) =1, (x) by symmetry so that in this case (7) is solvable for f, (x). Changing

the notation we fix x and consider the interval (x-h, x +h). We obtain from (7)

eaX 1

fX-h(x): **** =

eitX~h) L gu (X+h)  gak pg-ah
and consequently by (8)

1

2
) E‘{exp<"'2 Tasnxen) I Gy

Here ch denotes the “hyperbolic cosine” function, as sk denotes the “hyperbolic
sine” function: '

el—e-"

- °
10 chg=-" ", shO= e

With this foot in the dbor, we will push on to calculate f,(x).

3) P AL, EAE M
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Recall x € (a,b), hence for sufficiently small h>>0 we have (x=h,x +h)C (a,b)
and so
(11) Toxoi x4 Tiapre
We shall denote 7,x_;. ¢, by 7(h) below; observe that it can also be defined as
follows:
(12) (h) =inf{t ~0: | X () -~ X(0)|=h},
namely the first time that the path has moved a distance >:h (from whichever ini-
tial position). Now starting at x, the path upon its exit from (x-h,x+h) will be
at x—h or x+h with probability 1/2 each. From the instant 7 (k) onward, the path
moves as if it started at these two new positions by the strong Markov property.

This verbal description is made symbolic below:

2
(13) E*«[exp(—%’-); X(n) =a}
) 2
=¥ {exp(~ " Tz(h) )3 EXT7 7 exp(~ qé_r); X (1) =al},

It is crucial to understand why after the random shift of time given by t(h), the
“function to be integrated”: (exp (- KZL), X (t) =a) does not change, This point
is generally explained away by a trick;f symbolism, but one should first perceive
the truth with the naked eye. Anyway (13) may be written as

a*t (k)

ad fixy=E{exp({~— 9

)} ; (F(x—h) +f,(x+h) ),

Using (9) we may rewrite this as follows:

15) f by —2f(X) Hf(x-h) 20’1(“{") =25 .
h? h*
Ietting o, 0 we see that the left member in (15) converges to e?f,(x). It is also

immediate from (14) that

(16) fo ) <o~ {f(x=h) +[.(x+R)},

valid for a <{x-h< x+h<b, Since f, is also bounded, (i¢) implies f, is conti-
nuous in (a,b), in fact convex(see e, g. {Courant, Differential and Integral Calculus
Vol. T, p. 326]). Now if f, has a second derivative f” in (a,b), then an easy exer-
cise in calculus shows that the limit as & v 0 of the left member in (15) is equal
to £7(x). What is less easy is to show that a close converse is also true, This is
known as Schwarz’s theorem on generalizel second derivative, a basic lemma in
Fourier series. We state it in the form needed below.
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Schwarz’s Theorem. Let f be continuous in (a,b) and suppose that

1imJ X+ =2f(X) +f(x-h)

0 =90 YXE@,b)

where ¢ is continuous in(a,b). Then ‘f is twice differentiable and f” =¢ in(a,b).
It is sufficient to prove this theorem when ¢=¢ in (g,b), and a proof can be

found in Titchmarsh, Theory of Functions, 2nd ed, p.431.*’ Since f, has been shown

to be continuous, Schwarz’s theorem applied to(15) yields the differential equation:

an f1(x)=a®f(x), XE(a,b),
The most general solution of this equation is given by
18) - J.(x) = Ae** + Be™**,

where A and B are two arbitrary constants., To determine these we compute the
limits of f,(x) as x—»a and x—b, from inside (a,b). From(s) and (2,9) we infer

that
- . . b-
(19 lim f,(x) <lim EX{X (1) =a} = hm_b“.’_‘-_» =03
X-b Xovb X~y 0—a
lim £, 00 < lim EX{X(r)=b} = lim ==% <1,
X - X~k

N—b

Since f,::0, the first relation above shows that lim f,(x) =¢0, Using (7) we see that
X—b )

e’<Ce” lim f, (%)
St

so lim f,(x) =1. Similarly we have
Xt
Q20 lim f,(x) =1, lim f,(x) =0,
X—+a X-—a
Thus we obtain from(18):
0=Ae” +Be~", 1= Ae"+Be ",

Solving for A and B and substituting into (18), we obtain

sha((b-x)

— sha(x-a)
2n » fa(x) = YT ETE , d

SR O R ey i i

where the second formula in (21) may be obtained from the first by interchangihg

a and b. Finally we have by(8):

, X o't sha(b—x) +sha(x—a)
@2 E*{exp( 5 )} sha(b—a)

Exercise 9, The quick way to obtain (21) is to use (7) for —a as well as
+a.
Exercise 19, Derive (2,9) from (21), and compute
E*{T.; T.<T,}.

1) W, Rogosinski, Fourier Series /\35rif kA&,
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Answer: (b-x) (x—-a) (2b—a-X)/3(b-a),
Exercise 11, Show that for 0<<6<x®/2(b~-a)?*, we have

COS(\/W(x—a;b
EX{es® V)= o
COS((\/W (T))

))

"Prove that EX{e?* P} = +co for 6=n2/2(b-a)?,
A third way to derive (21) will now be shown, Since (7) is valid for —¢a as

well as @, letting a— — oo we obtain
| ¢ a?
eialx = e,a[bEk{exp(7_Tb) }.

Changing «?/2 into A, writing y for b and observing that the result is valid for
any x=+£y on account of symmetry of the Brownian motion with respect to right
and left:

(23) E*{e""r}=exp(~+/ 21 [x~-y]).

This equation holds also when x =y, but the argument above does not include this
case, The little sticking point returns to haunt us! We can dispose of it as follows. If
y—>Xx then T,—T, almost surely (proof?), hence the Laplace transform of T, converges
to that of T,, and (23) takes on the limiting form

EX{e—/\TX} — 1.
It follows that P,{T,=0}=1, namely Exercise 3 again,
Recalling that 7,,=T,/\T,, We can write down the following relations:
EXe T } = E¥{exp(—~ A(T.,A\T)); T,<T.}

+E*{exp(~ M{T,AT,)); T.<T,} * E*{e7'T¢}
EX{e"*Te} = EX{exp (A(T.A\T,)) 35 T.<T,}

+ EX{exp(— A(T,/\Ts); T, T.} » E*{e"Ta},

Using (23) we see that these two equations can be solved for the two unknowns

24)

which are just f,(x) and f,(x) after a change of notation.
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