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Introduction

In this paper we shall describe a somewhat fruitful method that can be used
10 obtain various equi-distant interpolation formulas via inverse series relations.
The main step of the method is to replace the discrete parameter contained in an
inverse series relation by a continuous one, and if necessary, to transform the
series summation so as to make it depend continuosly upon the continuous real
parameter, We shall give a number of examples illustrating the method. In parti-
cular, a kind of simpler interpolation formulas using differences will be derived
as a consequence of a generalized Mébius inversion, and it will be expounded that
such formulas may be conveniently used to solve interpolation problems defined
on [0, co) as well as on [0,c0) X [0,00), etc. Finally a unified explicit formula for

piece-wise polynomial interpolation of any degree will be discussed in some detail,
§1, Description of the Method

Suppose that we are given a pair of finite inverse series relations of the form

f(ny=> o(n,k)gk) (1)
k=0

g(n) = > w(n,k)f(k) (2)
k=0
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where @(n, k) and ¥ (n, k) are the kernels of the series transformation satisfying

the orthogonality relations

S, ywk, j)= > wn ko, j)=46,,

ko= kwj
with ¢,; denoting the Kronecker delta and @(n, k) =w(n,k)=0 for k>n. If, in
particular, the definition of the kernel funetion ¢(n, k) can be extended analytically

to be a function @(x, k) of the continuous real variable x in [0, o), and if {(x)

denotes the integer nearest fo x, (i.e,, (X) = [x+%],[a] being the integral part of

a), then we may define

[x]

Si(f; %) = D 0(x, k)g (k) (3)
k=0

S, (f; x) = > D(x, k)g(k) (4)
k=0

as a pair of interpolation formulas for a given sequence {f(k)}% (with {g(k)} as a

transformed sequence of {f(k)}), since in fact we have

Sl(f;n)=sz(f;n)=f(n), n=0, 1, 2, (5)
Sometimes it may even be possible to introduce a formal series
def
Se(f: %) = D 0%, k)g(k) (6)
k=9

to represent an interpolation formula for {f(k)}, But in such case there are invo-
lved some convergence problems regarding (6),
Notice that in general neither (3) nor (4) is a continuous function of x. In fact,

we have
S(fin+) -8, (f;n-)=0(n, n)gn),

S+ ) ) = Sy(fs (Mt ) =) =+ n+ DERFD),

where S;(f;a+) (i=1,2) denote the limits of S;(f;x) as x—>oa +and x—»0— respec-
tively, and @(x, k) is assumed to be continuous in x for each k. However, a suitable
combination of (3) and (4) may vyield a continuous interpolation for{f(k)}, Let
us now state a simple proposition as follows,

Proposition Let S,(f;x) and S,(f;x) be defined respectively by (3) and (4) in
which @(x; k) is a continuous function of x (0<<x<{oo) for each fixed k. Let {x}
denote the distance of x from {x),i. e, {x} = [{x) —x|with {x) denoting the nearest

integer to x, Then S(f; x) defined by the following expression

S(f; %) = 2{x} eS8, (f; X) + (1 = 2{x}) «5, (f; %) (7>
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is a continuous interpolation formula for any given sequence {f(k)}, In words,
S(f; x) is a continuous function of x(0<{x<{oo) satisfying the interpolation condition
S(fin) =f(m), (n=0, 1, 2,--),

Observe that S (f;x) and S,(f;x) are continuous everywhere except at those

points x=n and x=n+—21— respectively, where n=0, 1, 2,.-, Thus it suffices to

show that S(f;x) given by (7) is continuous at x=n and x:n+%_ As may be ve-
rified at once, we have

lim S(f; x) =S,(f; n) =S(f;n);

x—n

lim S(f;%)=S,(f;n+1)=S(n+ 1),
x(n+l) 2 2
Moreover, it is clear that S(f;n)=S,(f;n)=fn) (n=0, 1, ---), Hence the pro-
position,
Certainly there are other forms of combination that may lead continuous S(f;x)
similar to (7).
Example 1 The simplest reciprocal pair is the ¢§-transform corresponding to

the case
o (n, k) =w(n, k) = (- D¥}).

In this case we may write
— C - o n = ( = T An
B0 =31(-1) (2)ider = (= DA

so that (3), (4) and (6) may be expressed in the for ms

[x]

X
S, ({J; = A*F (0 , (8, 1>
L %) Z(k) £(0)

<X >

s.thio = (5 )ato, (8.2)

k=0
def « x
Sy (f;%) = kzo(k)A*f(m, (8.3)

respectively, These are the well-known Newton type interpolation formulas,
Example 2 Denote by B,(k=0, 1,--) the Bernoulli numbers in the even
suffix notation so that Bz,,H:(_),(k:l, 2, +--), As may be verified, there are

inverse series relations

f(n)=Z(Z)(n—k+1)"g(k) (9>

k=0
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n

s =3 (1Bt n-t) 10

kw0
It may be observed that the above equation (9) has been given incorrectly in Rior-
dan’s book [7] (cf. Table 3.3; the factor (k+1)-! contained in the first formula
should be replaced by (n—k+1)-!), Write B,=B*, f(k)=f* so that a symbolic
abbreviation for g(n) may be written as

g(n) = (n)Bk "-k=(B+f)"
( Z . )B'S (B+1)
in accordance with Blissard calculus, Let us now define

[x]

S1(5 =,§,(i)é§%¥, an
S22 =§(2)~,‘;’—’j—?§, (12)

Then the combination of above S, (f; x) and S,(f; x) in the form of (7) gives a con-
tinuous interpolation for {f(k)} in [0,0c0),
Example 3 The so-called Lah numbers are defined by

L= (~D"F(511) k=1Dm, n=1, 2, -
with L, ,=8,,. For any given sequence {f(k)} we call the sequence {g(n)} given by
g(m) =D (-~ D*L, , f(K)=g(f;n)
k=1 .

the Lah transform of {f}, Then we may define

{x]
o rx+1) (x-1Y, ..
Si(f;%) = ,g‘"Aﬁm (5_ )8 (13.1)
eyl T(x+1) (x=1Y,
S:(f; %) = k_l—--~»—,5—!~~——(k _ 1)g(f, k) (13.2)
def &\ rx+1) (x-1
Ss(f; %) = kz_];— % ~—(k_1)g(f, k) (13.3)

These are interpolation formulas for {f(k)}. In particular the combination of (13.1)
and (13.2) in the form of (7) gives a continuous interpolation on [0, 0),

Example 4 Define the Legendre sequence transform of {f(k)} (cf, Riordan [7],
Table 2.5) by the following

gm =S (- 1)k+”((22f,‘c’)— nz_",:_pl )f(k)Es(f; n)

k=0
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where p is any fixed non-negative integer, Then we have the interpolation formulas

fx]

xX+p+k
S, (f; %) = g(f; k) (14.1)
! g( p+2k )
<x> x+p+k
S, (f; x) = g(f; k) (14.2)
2 ,‘Z;( p+2k )
def = x+p+k
Sy(f;n) = P e (s; k) (14.3)
: kz_:;( p+2k )

Example 5 Let ¢ and p be positive integers. Define the Legendre-Chebyshev
sequence transform of {f(k)} (cf. Riordan {7], Table 2,6) by the following
g0 =3 (VD) (- D =gfs m
k=0
"Then we have the interpolation formulas
{x]

s =3 - oH(( G D) (P 1 oD ey s

del = X+ — - - _
; s Y p-1+(c 1)k) X+p—-1+(c 1)k) .
sifi0'= 30T ) e o (T N (R (15.2)
Example ¢ Let {a,}and {b,} be any given sequences of numbers such that
Px,n) = n (@; +b;x)#0 for x=0,1,2,--, with (x,0)=1, Then starting with the

i=1

-following inverse series relation due to Gould and Hsu [2]

g =37 (= 14} Yo cie, 5 (k)

k=10

p(n,k+1)
:and noticing that g(n) = (- 1)"A"(Y(X,n)f(X)),., We may get the following interpo-

f(n)= " (—'1)/’ n #qﬁf_l,_-tlc__bk+li (k)
Ze0(E) :

Jation series
def

i Qe+ Kby, (X
S = 3 L (3)AN0 ) 160).ms (16)

‘Evidently for the particular case a,=1, b,=0 (n=1,2,:-) the righthand side of
(16) will reduce to the Newton interpolation series. Since the interpolation condi-
tion S(f;n) =f(n) (n=0,1,2,--) is always fulfiled for whatever given parameters
-a, and b, (n=1,2,--) We see that partial sums of the series (16) may yield a va-
‘riety of rational interpolation formulas, A detailed investigation of (16) with an eye
to making it applicable to numerical analysis has been developed in our previous
Jpapers [57[6]., Actually we have shown that (16) can represent any rational fun-
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ctions (without poles at x=0,1,2,+--) by suitable choices of the parameters a, and
b,, and that the differences F(x, k) = Ay (x, k) f(x)) (k=0, 1, 2,-) satisfy the
recurrence relations

F(x,k+1)=(a,,; + by X)(F(x+1,k) -F(x,k)) +

+(k+1)b,  F(x+1,k)
with F(x, 0) =f(x). Some convergenze conditions for (16) have been also discussed
previously (loc cit).
§2 A Kind of Interpolation Formulas Using Finite Differences
Any two sequences {a,} and {b,} of real numbers (with a,+0, b,+0) are called

a pair of reciprocal sequences if
(Sne (o=,
k=0 k=0

where the multiplication is performed formally in accordance with Cauchy’s rule
of product. In order to get a large class of equidistant interpolation formulas we
shall make use of the following known result which was actually obtained as a
consequence of a generalized Mébius-Rota inversion theorem [37],

Proposition For any given reciprocal sequences {a,} and {b,} we always have

the pair of inverse series relations:

fn) =§(§(”;f’;l)a,)g(k> an

g(n) =Z(§(”;'j;1)b,)ﬂk> (18

k=1 "r=0Q

where we have to adopt the convention for binomial coefficients (8):(: }): 1,

(5H=(2)=0, m=-w.

Let us call {g(n)} the transformed sequence of {f(k)} and denote it by g(f;n) =
gn), (n=1,2,--)., Then we may construct interpolation formulas of the forms

{x3 (x1-k

s =3( 3 (T E T Da e (19)

k=1 T=0

x>  <x>-1

s:h0=3( (75 e s (20

k=1 T
A combination of §,(f; x) and S,(f; x) in the form of (7) may yield a continuous:
interpolation on [0, o).,
Obviously both ¢19) and (20) imply infinitely many particular interpolation
formulas since {a,} (a,0) can be assigned arbitrarily. However, only simply
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constructed interpolation formulas may be useful for practical computation, In

what follows we shall seek for such formulas by taking

(D) 0= () @rona

where 4 is a fixed integer not less than 2, Clearly such {¢,}and {b,} are reciprocal
sequences, Then starting with (17) and (18) we can finally arrive at the following

Theorem 1 Let 2>=2 be a fixed integer parameter, and let {f(n)}%_, be any
given number-sequence with supplemental definition f(-m)=0 (m=1, 2, 3, ).
Then the function defined by the following

(2144

s = 33 (Y747 Var e -a-1 21>

possesses three properties: (1) it satisfies the interpolation condition §(f;n) = f(n),.
n=0,1,2,--; (2)it is 2 continucus function of x (0<<Xx<Toc)s; (3) for every po-
lyncmial @(x) of degree<<i— 1 defined for x>0 with supplemental definition @( —m)
=0 (m=1,2,-) we always have S(®;x) =9(x), (0<<x<oo).

Proof 1° Making use of the well-known combinatorial identity (cf. Gould[17
formula (3,2), p. 22)

- (x+k) y+n—k =(x+y+n+1)

k -k (*)

k=9 -

we can easily verify that S(f;x) satisfies the interpolation condition, In fact we.
have, by (21) and (%),

S(f;n)=:il(n1flk)(2( )(*1) fk— 1—;))
:g(n;f;k)]g(k_i_i)(_l)k«i—if(i)
N Z (s PRI TSI

i =0 kaj+1
-3 3 (A E)

=Zf<7)2( -7~1+}L v)( /1—‘)1+v)

1=0

=S ("1 = 1o,

1=0
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2° To prove that S(f;x) is continuous notice first that for nonnegative integer

(X : . .
m<n we have lim (n)= 0. Since S(f;x) is continuous everywhere in [0, o) except

X—*m

at integer points it suffices to consider the case x=n (n=1,2,:),

Now it is easily found that

741
lim S¢f;n+e) = lim

e~ 0+ £— 0+ Pyt

(n+e+}t—k

i1 )A*f(k—11~1) =S(fin) =f(n).

Similarly we may verify that

lim S(f;n—-¢) =f(n),

€~ 0+

3° Suppose that f(x) is a polynomial of degree <Ci -1 defined for x>0 with
f(-m)=0 (m=1,2,-+1), Then

AMFQ0) =AM (1) = AMf(2) =+ =0,

Thus (21) may be rewritten as

A
S(f;x) = Z(x;fzk)zﬂf(kﬁx— 1), (0<<x<eo).
k=1

This is of course a pclynomial of degree (41— 1) and satisfies a set of conditions
S(f;n) =f(n), n=0,1,2,--. Hence we must have S(f; x)=f(x) (0 <<x<co). This
completes the proof of Theorem 1,

Theorem 2 The continuous interpolating function S(f;x) given by(21) is smooth
everywhere in (0, co) except at the integer points x=n, (n=1,2,-). Moreover

L _(-puasn-n, (22)

S’ (fin+)-8'(f;n-) =

where S’ (f;n+)and S’ (f;n—) denote the right and left derivatives of S(f;x) at
x=n, respectively.

Proof Evidently S(f;x) can be differentiated any number of times with respect
to x (0<<x<oo) except at the integer points x=n, (n=1,2,--), Moreover,

n

i

d /x+i1-k A

st gmey =34 ) eafle-a-1),
,;dx A=1 Jin

n+ -1
X+ Ai-k

so6 that we have

. gy G (X=RY e
s ey -8 (n-) =S (371 Ao

=4 x A - :___l____ - AAA -
=a(,I ), At =D = T -
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Hence the theorem,

Though (21) is not a smooth i.nterpolating function it may be effectively used
to solve the interpolation problem on (0.c0) whenever the sequences of data, {f(n)},
are given empirically, In what follows we state a similar result that can be pro-
ved similarly and may be used to treat the interpclation problem on the plane
region [0, co) X[0,c0). For convenience we use H("*) to dencte the class of biva-
riate polynomials @(x,y) of the form

P(X,¥) = D Copox” ey
0<Sa<r
0<B<s
In other words, H("*} consists of all the bivariate polynomials with highest de-
grees r in x and s in y, respectively, '
Theorem 3 Let r>=2 and s>2 be positive integer parameters, For any
given sequence {f(m,n)} (Mm,n= 0,1',2,--~) we introduce the supplemental definition
f(-k,&)=£f(+,-)=0(k,j=1,2,3,--). Then the interpolating function of the form

[x+rl{y+'s]

S %,9) = Z; ,2_]1 ("ji}k)(yj_s;")A;A;f(kw—1,i—s—1> 23
with A, A, denoting the difference operators in regard to x and y of £(x,y), re-
spectively, has the following properties (1) S(f;m,n)=f(m,n) (M,n=0,1,2,)%
(2) S(f; x, y) is a continuous function of (x,y) in (0<x, y<lco)s (3) for evetry
polynomial @(x,y) CHU-"*-V defined on [0,c0) X [0,c0) with supplemental defini-
tion @(—k,*) =@(+, -j) =0 (k,i=1,2,-) we have S(®;%,y) =9(x,y) (0<X,y< o),

As may easily be observed, the continucus surface z=S(f;x,y) defined on
[0,00) X[0,00) is not smooth on the lines of net: x=mand y =n, (m>,n: 1,2,3,°).
§8 Remarks and Discussion

3.1 Interpolation formulas defined on any set of equidistant knots

The interpolation formula (21) is a formula with step-length unity, Let the
knots of interpolation be given by x,=x,+kd (k=0,1,2,), where d is a positive
increment, Suppose that we are given the function values f(x,) =f(x,+kd) with
the supplemental definition

f(xg"md) =0, m = 1’2,3,"'.

Then (21) may be extended to the form (with x in ([0, c0))

[(&-®0)/d + 2]

som= 3 (TR A p v e i D) (24>

k=1

where A denotes the difference operator of increment d. Similarly, we have a
d

bivariate interpolation formula for f(x,y), of the form
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[(@-®e)/d1+ ) [{¥-Yo)/d2t+ 5]

S@ud (fox Y)Y = Z z ((X—xo)/dl+r—k)((y—y0)/d2+s—i>

Pyl =1 r-1 s-1
x‘lA;fI\;f(xﬁ(k—r—l)dl, Yot (j—s—1)d,) (25)

where r and s are positive integers not less than 2, and A, and A, are partial
d, dg

difference operators with respect to x any ¥y, and using increments d, and d,,
respectively,

Formula (25) can be used to approximate bivariate continuous function z = f(x,y)
in [0, o0) X [0, ), when adopting sufficiently small d, and d,. In particular (25)
is exact for bivariate polynomials f(x,y¥) whose highest degrees in x and y do not

exceed (r—1)and (s~ 1) respectively,

Example Given f(x)=- . Take x,= ~1, d=0.2, so that the knots of

interpolation may be written x, = — 1+ 0. 2k(k =0,1,---) Supplementing the condition
f(-1-0.2m)=0 (m=1,2,-), and making use of (24) With A=4, We get a table
of numerical results in which a comparison has been made with the results given
by the NeWwton interpolation P,,(x) consisting of ten terms. (The table is display-
ed in the close of this paper).

3.2 Comparison with Newton’s interpolation formula

1° Formula (24) is an indefinite summation with a variable upper limit so
that it is not a type of polynomial interpolation like Newton’s,

2° Both Newton’s formula and (24) make use‘ of finite differences, but the
latter one consists of differences of the definite order A at distinct points x,_,_, =
x, + (k—4-1)d, while Newton’s formula employs differences of all orders at a
fixed point say; X,.

3° Having fixed the highest order of differences the Newton interpolation for-
mula may satisfy a finite number of interpolation conditions so it possesses only
the local property of approximation. Formula (24) (with fixed A>2) may be used
to approximate a function globally on [(,c0) since it satisfies all the interpolation
conditions S'9 (f;x) =f(x), x =%y, X, +d, X, + 2d,... .

4° As an approximation process for fixed A>=2, the accuracy of (24) may be
increased by diminishing the step-length (increment)d, In fact, (24) may converge
to a contiuous function f(x) as d—>( +. But this is not the case for Newton’s inter-
polation process, Actually the increasing of difference orders in Newton’s formula
may even lead to some unforeseen Runge’s phenomena, (This may be viewed from
the table, loc. cit,)

3.3 A property for displacement

Let us now state and prove the following
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Theorem4 Let {f(n)}; be any given sequence of numbers with supplemental
definition f(-k)=0 (k=1,2,3,---). Define the sequence {@(n)}=_ by the following

oy = f(n+1t) when n=0
)—{0 when n<g

where t is any fixed positive integer. Then, writing x=X +¢, we have

S(Fix)=8(P:X). (26)
That is,
Ex+le+;\l_ [(X+1] X + A— N
( )aif =2 1) = Z( )aredk-1 -1
k=1 A—l k=1

Proof The verification of (26) involves somewhat complicated manipulations
with some kinds of binomial summations. In particular we shall make use of the
combinatorial identity (cf. Gould’s Table 3, formula (3,47))

Z(—l)( )<x-: )=(—l)"(rfn) (x—real)

k=1

Clearly we may write

[x+1]

b (XH_k)A*f(k~A~1+t)

I

S(f x)

IS

X+1]
= Z Z =S, +S; say.
= A+

=1~

As may be observed, §; may be rewritten as

X +33 <X+A—

S = )A‘P(k A-1).

k=X +1
For the second sum S, we have to reverse the order of the double summation by
splitting the resultant sum into three manageble summations, (This requires a little

grick). More precisely we have
Lo X+a-ky i
- 3 (

)= (‘l)wl(k_?ﬁl)“"”)

k=1-1 jrek-1ed

- f(i+t)j§1<—1>*—f-1(x+l_k)(k ")

=t Py A-1 -J-1

+Zf<;+t>’+zm<—1>“i(X:'l_k)( * )

et kil -1 k_]"']-

+§f(1+t) Z (-1 i" ’(X”_k)(k * )

i=0 kvwj41 A"l "]_'1

=8, + 825+ S23 say,
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By the supplemental definition we have §,, =0. Now applying the combinatorial
identity cited, we easily find §,,=0. Indeed,

Z f(”t)z(‘l)‘ "( i—Hk)(aik)

im A=1

Zf(1+t)( ’1_1)

=t
As regards §,;, we have

Sﬁ_ (X'Hl— ) (_l)k—i—l(

i=0

oo _1)f(i+t)

(X+A ANy

)Z( _1),< ; )(P(k—j— 1)

(X Aok )awd-1-1

Hence we obtain S(f;x) =8, +S,=8, +S;; =S(®;X), completing the proof of (26).
Theorem 4 indicates that a longer summation S$(f;x) (when x is large) may

"M

conveniently be replaced by a shorter one. In practice one may take t =[x] so that
0<X<1 and S(¥;X) consists of only A terms,

§4 An Unified Explicit Formula for Piece-Wise

Polynomial Interpolation on [0, o)

It may be of interest to note that a suitable modification of (21) can yield a
piece-wise polynomial interpolation formula on [(, co) of degree (41— 1). Actually
what we give below is such a formula

A4la/(A~-1)203(2 ~1) (x + 41— k

i i—-1 )A‘f(k—x—l) 27

S(fix) =

Here {f(k)}T is any given sequence with supplemental definition f(-m)=0. m=1,
Dyeee.

According to theorem 4 it is readily observed that §(f;x), when defined on each
interval [p(A-1), @+ U-1] =0, 1, 2,...), satisfies the interpolation condition

g(fik) =f(k), k:p(l“l)p p(ﬂ,_ 1) +19"'9p(l“‘1) +A-1

so that §(f;x) is the uniquely determined (A-1)-th degree polynomial on the in-
terval just mentioned. Thus (27) offers a unified formula for piece-wise polynomial
interpolation on [0, o).
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By employing the argument similar to that used in the proof of theorem 1 we
may infer that §(f;x) is a continuous function smooth everywhere in [0, co) except
at the points x=m=( (mod(4— 1)), where the derivatives §/(f;x) have jumps:

S'(fim+)-§'(fim-) =

In the numerical table as shown below it is clear that the data given by
S (f;x) (with d=0.2) appear to be much better than those given by Newton’s

interpolation polynomial P, (x).

1
A-1

(- DAY (m-1).

Appendix: Numerical Table
{0,2) . < 0.2 .

* F(x) TI%‘@}? SOB(fix) | FOV(f3x) Py (%)
-1 0.03846 0.03846 = 0.03846 0.03846
~0.96 0.04160 0.04269 | 0.04269 1.80438
- 0.90 0.04706 0.04841 | 0.04841 1.57872
~0.86 0.05131 0.05225 | 0.05225 0.88808
~0.80 0.05882 0.05882 | 0.05882 0.05882
~0.76 0.06477 0.06913 | 0.06417 | —0.20130
- 0470 0.07547 0.08088 | 0.07443 | —0.22620
~0.66 0.08410 0.08789 | 0.08320 | —0.10832
~0.60 0.1 0.1 0.1 0.1
- 0.56 0.11312 0.104 0.11408 0.19873
- 0450 0.13793 0.125 0.14027 0.25376
- 0.46 0.15898 0.149 0.16156 0.24145
- 0.40 0.2 0.2 0.2 0.2
~0.36 0.23585 0.1864 0.1864 0.18878
~0.30 0.30769 0.25 0.25 0.23535
-0.26 0.37175 0.3344 0.3344 0.31650
-0.20 0.5 0.5 0.5 0.5
~0.16 0.60976 0.7376 0.6224 0.64316
~0.10 0.8 0.95 0.8 0.84340
~0.06 0.91743 1.0096 0.9004 0.94090

0.0 1 1 1 1
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wRAlw HEHF
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] 2

XX ERE, ERABXRTURASEREARG—DRE, REMEHEEK, R
ENEREBERRPY RGBT FFT EHESTROEE, NHEREM
ERRB—NBEIR, KR —RIATFHAT XTI E. 50, TV X Mobius-
Rota RIEFARHE, BEHT —RENTESRENHEEAN, XEANARHT Newton 3%
ik, HARBFREEBEET FEMTARNPREAREEENES, SRR
FH B “Runge HR”, AXAHTHAER, BARTXRARNMER. &RE, &IEX
BEREBEEOSTB (R BEREET Mg —aR. BR, XXTRGEEERHE
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