Generalized Möbius Inversion Theory Associated with Non-Standard Analysis*

L. C. Hsu (Xu Lizhi 徐利治)

(Jilin University)

This brief note announces a comprehensive result that includes as particular-cases not only the extended Möbius-Rota inversion formulas (cf.[1]) but also some classic inverse relations in analysis (e. g. the fundamental theorem for integral calculus and a kind of Fredholm convolution integral transforms with variable upper limits).

Throughout the note R, *R and *N denote respectively the standard, the non-standard real number fields and the set of standard & non-standard natural numbers in *R. Sometimes we have to use several R's or*R's to denote several different real axes. In particular, frequent use will be made of the most familiar infinite integer ω and the positive infinitesimal $\varepsilon = 1/\omega$. We shall need a few definitions as follows.

Definition 1 Let $S \equiv (S, \leq)$ be a poset that is not locally finite but consists of a finite number of chains each of which contains all the elements representable by the real points or rational points of an interval or of a union of intervals contained in some R or in some R. Then S in said to have an ε -partitioned structure \hat{S} whenever all the chains of S have been divided into an infinitude of ε -intervals, so-called the infinitesimal partition with ε -length.

As described above, \hat{S} may be regarded as a poset containing ε -intervals as its elements, if the ordering relation between ε -intervals is assumed to be parallel to that of S; The method of non-standard analysis permits one to define a kind of "incidence algebra" on $\hat{S} \times \hat{S}$, in which the incidence function λ and some related ones (e. g. δ, ζ, μ and others) may be defined similarly as that in the ordinary case. Thus, for instance, if S is totally ordered and if $(x,y) \in \hat{S} \times \hat{S}$ with x < y, $y \equiv x \pmod{\varepsilon}$, then we have

$$\lambda^{k}(x,y) = {(y-x)/\varepsilon - 1 \choose k-1} = {(y-x)\omega - 1 \choose k-1} \quad (\text{in } *R)$$

^{*} Received June 29, 1982.

where the non-standard binomial coefficients can be manipulated in R just like that in R. (Note that $x \in S$ means x = ve with $v \in N$.)

Definition 2 Let $\phi(z) = \sum_{k=0}^{\infty} a_k z^k$ $(a_k \neq 0, a_k \in R)$ be a formal power series

with its formal inverse $1/\phi(z) = \sum_{k=0}^{\infty} b_k z^k$. Then the pair $\{\mu_1, \mu_2\}$ as defined by

$$\mu_1(x,y) = \sum_{k>0} a_k \lambda^k(x,y), \ \mu_2(x,y) = \sum_{k>0} b_k \lambda^k(x,y),$$

are called a pair of reciprocal μ -functions with $(x,y) \in \hat{\mathbf{S}} \times \hat{\mathbf{S}}$. In particular, if S is itself locally finite, one should write $(x,y) \in S \times S$ instead of $(x,y) \in \hat{\mathbf{S}} \times \hat{\mathbf{S}}$.

Definition 3 Let S be a poset satisfying either of the two conditions: (i) S is locally finite having a minimal element; (ii) S is not locally finite but possesses an ε -partitioned structure \hat{S} in which there is an ε -interval that precedes all other ε -intervals of \hat{S} . Then S is said to be a poset having a foremost element.

Sometimes the number sequences $\{a_k\}$ and $\{b_k\}$ occurred in the definition of $\{\mu_1, \mu_2\}$ are called reciprocal sequences in *R.

General Inversion Theorem Let S be a poset having a foremost element. Then for every reciprocal pair of μ -functions $\{\mu_1, \mu_2\}$, we have a pair of inverse relations as follows

$$st(f(y)) = st\left(\sum_{x < y} \mu_1(x, y)g(x)\right),$$

$$st(g(y)) = st\left(\sum_{x < y} \mu_2(x, y)f(x)\right),$$

provided that both the right sides of the formulas have meanings in the non-standard analysis, where f and g are functions of $(S \rightarrow R)$ or of $(S \rightarrow R)$, and correspondingly $(x,y) \in S \times S$ or $(x,y) \in S \times S$, according as S is locally finite or not.

The proof can be accomplished in a similar manner as that for the ordinary case (cf. [1]) and with the aid of non-standard analysis (cf. [2][3]).

Certainly, various choices of $\{\mu_1, \mu_2\}$ may lead to various pairs of inverse relations. In what follows we just mention a few examples in classical analysis.

Example 1 Take $S \equiv [0, \infty)$ with $S \equiv \{e, 2e, \dots, ve, \dots\}$ $(v \in N)$. For the ordered set $N \equiv \{1, 2, 3, \dots, n\dots\}$ let us choose a reciprocal pair $\{\mu_1, \mu_2\}$ of the form

$$\begin{split} & \mu_1 = \varepsilon \zeta = \varepsilon \lambda^0 + \varepsilon \lambda, \qquad (\lambda^0 = \delta) \\ & \mu_2 = \varepsilon^{-1} \zeta^{-1} = \varepsilon^{-1} (\lambda^0 - \lambda + \lambda^2 - \cdots). \end{split}$$

Then applying the inversion theorem to $g(x) \in C[0,\infty)$, we have

$$f(n\varepsilon) = \varepsilon \sum_{k=1}^{n} g(k\varepsilon)$$

$$g(n\varepsilon) = \varepsilon^{-1} \{ f(n\varepsilon) - f((n-1)\varepsilon) \}, \ f(0) = 0.$$

Putting $*a = ne \in *R$ so that $n = *a\omega \in *N$ and taking standard parts, we get at once (with a = st(*a))

$$f(\alpha) = \int_0^a g(t)dt \iff g(\alpha) = \frac{d}{d\alpha}f(\alpha) = f'(\alpha), \ f(0) = 0.$$

This is the fundamental theorem in integral calculus.

Example 2 Consider S and S as in Example 1 and take

$$\mu_1 = \lambda^0 + \varepsilon \lambda$$
, $\mu_2 = \lambda^0 - \varepsilon \lambda + \varepsilon^2 \lambda^2 - \varepsilon^3 \lambda^3 + \cdots$

Then an application of the inversion theorem to $g(x) \in C[0,\infty)$ yields the inverse relations

$$f(\alpha) = g(\alpha) + \int_0^{\alpha} g(t)dt,$$

$$g(\alpha) = f(\alpha) - \int_0^{\alpha} e^{-(\alpha - t)} f(t)dt.$$

These are known as Fredholm's type of integral equations with variable upper limits.

Example 3 For the same S and \hat{S} as in the above examples, let $\{\mu_1, \mu_2\}$ be defined by

$$\mu_1 = \sum_{k \geq 0} a_k \varepsilon^k \lambda^k, \qquad \mu_2 = \sum_{k \geq 0} b_k \varepsilon^k \lambda^k,$$

with $a_0 = b_0 = 1$. Then applying the inversion theorem to continuous functions f and g of $(\hat{S} \rightarrow *R)$, we obtain the inverse relations

$$f(\alpha) = g(\alpha) + \sum_{r>1} \frac{a_r}{(r-1)!} \int_0^a (a-t)^{r-1} g(t) dt$$

$$g(a) = f(a) + \sum_{r>1} \frac{b_r}{(r-1)!} \int_0^a (a-t)^{r-1} f(t) dt$$

which may be converted into the pair of well-known Fredholm convolution integral transforms

$$f(\alpha) = g(\alpha) + \int_0^{\alpha} K(\alpha - t)g(t)dt,$$

$$g(\alpha) = f(\alpha) + \int_0^{\alpha} H(\alpha - t)f(t)dt,$$

where $\{1,K(0),K'(0),K''(0),\cdots\}$ and $\{1,H(0),H'(0),H''(0),\cdots\}$ form a pair of reciprocal sequences, and K(z) and H(z) are assumed to be analytic on the half plane $Rez \ge 0$. (Clearly Ex. 3 implies Ex. 2).

The whole details of this work will appear elsewhere.

References

- [1] Hsu, L. C., Jour. of Math. Research & Exposition, (1981), Initial issue, 101-4.
- [2] Robinson, A., Non-Standard Analysis, Amsterdam, 1966.
- [3] Stroyan, K. D. & Luxemburg, W. A. J., Introduction to the Theory of Infinitesimals, Academic Press, New Yosk, London, 1976.