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Uniform Convergence Rates of the

Nearest Neighbor Density Estimates*

H. R. Chen (Chen Xiru W #31%)

Let X,,+,X, be iid. samples drawn from a population with probability density-
function f and distribution function F . There are a lot of discussions concerning
the problem of estimating f from these samples, In 1965, Loftsgarden and Quesenber--
ryl!l proposed the following scheme: Chcose a positive integer k=k, depending
upon n such that 1<<k,<n. Find the smallest number a,(x) =a,(x; X;,--,X,)satisfying:
the condition

Fitisisng x-a,(x) <X, <x+a,(x)}) >k,
where #(A) denotes the number of elements contained in the set A, Define
fa(x) =k,/(2na,(x)) (1)
as the estimate of f(x).

A number of authors have studied the consistency of this estimate—sometimes-
known as the Nearest Neighbor Estimate.

The best result was obtained in 1977 by Devroye and Wagner, who showed in
[2] that under the conditions

a. f is uniformly continuous on R",

b. limk,/n=0, 1,.“2 logn/k,=0,

"0

then as n—»oco with probability one, we have
sup| f,(x) = f(x) |0, 2)

From this result, the convergence rate of (2) naturally presents itself. This problem
is of much interest, for one thing, a similar problem for the classical kernel esti-
mate has been studied extensively in the literature. In [3], the author has obtained
some results in this respect:

1, No convergence rate of (2) can bte established without some further restric-
tions imposed on f, beyond that of being uniformly continuous,

2. In case m=1, supposing that f satisfies Lipshitz condition, for some proper:

ly chosen k, we can get
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sup|f(x) - f(x)| =0m~V*(loglogn)'/¢), a.s. (3)

3, Also in case m=1, for arbitrarily chosen k_, one can find a density func

ns?

tion f satisfying Lipshitz condition, yet the assertion

sup|f (%) - f(x) | = O(n~"4(loglogn)~*/4) a.s.
is not true. )

Based on these results, the present author advanced a conjecture that for f sa
tisfying Lipshitz condition, the rate presented in (3) can be improved to O(n~1/4+*)
for each ¢>0. This means that under the above condition, the exponential 1/4 is
best and can no longer be improved. The purpose of this paper is to prove this re-
sult and its extension to probability densities satisfying the §-th order Lipshitz con-
dition (0<<{é<1).

The main result of this paper can be formulated as follows:

Theorem Let 0<{3<{1 and %, denote the the family of all probability density
function in R! satisfying the Lipshitz condition of 4-th order. If we choose

k =k, = [n/(1+35)] 1)

and define f,(x) by (1), then for any ¢, ~>co we have
sup|f.(x) — f(x) ]| = O(n~¥(1+38) (logn)'/%c,), a.s. (5)

for any f€,%#,;. On the other hand, for any 6&€ (0,1}, one can find f€ %, such
that for any choice of k,, the assertion

sup|f,(x) = f(x) | =O(n~¥0+30) g5,

is not true.

Proof The proof makes use of & special case of a powerful inequality given by
Devroye and Wagner in[4], which we formulate below as a lemma.

Lemma. 1 Suppose that X,,...,X, are independent one-dimensional random vari-
ables with a common distribution function F. Denote by F, the empirical distribu-
tion function of X,,-+,X,. Then, for any £>0, 0<<B<1/4 and n>=max(B™!,8Be" %),
we have

P(sup{|F,(b) -F, (@) - F(b) -F(a) | : 0<F(b) ~F(a)<B}=>¢)
o2 (i 12) +3e0 (- 500)
<16n exP(64B+48 + 8nexp 0 ) (6)
Turning to the proof of the theorem, we choose
B=2on~(1+8)/(1+38)

and use n~(1+20)/(1+3) (logn) V2c, to replace & in (6) (£>>0 given). Note that B<1/4,
n>B! and
8Be~*=16n/[ (logn)cie?lln
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all for n large. We get for these n

P(n("'z‘”/(“”’(logn)_UZC;’SUP{IF,,(b)—F,,(aj—F(b)—F(a) I :

O0<SF(b) —F(a)<<2™ (1+8)/(1+38) ) >¢)

c,z,ezlogn . n(1+a)/(1+sa) )

<16n’exp(~ - =
1281 (“")/(“3")+4ec”(logn)”2n, (1+28)/(1438)

+ 8nexp ( — 5™ 1n2/(1+38)) 7

by employing the lemma. As 6>0, &>0 are fixed and c,>co, one sees that the
right-hand side of (7) is of the order O(n~?%), Hence the series with a general term
as the left-hand side of (7), summed up from n=n, (n, sufficiently large) to oo,
is convergent. By the arbitrariness of >0, it follows that

sup{|F, () -F,(@ —~ F () -F(a) |:0<F(b) — F(a)<<on~(1+8)/(1+33)}
) =o0(c,(logn)!/2n=(1+28)(1+38)y . q, 5, (8)
Since 6 >0, we have®)
c,(logn) V™ (1+23)/(1438) = g (n~ (1+8)/(1438)y |
From (8), one sees that with probability one, in order that d can be the smal-
lest number to satisfy .
F (x+d) —F (x—d)=k,/n=n"(+8)/0+3) 4 o(n™1),
d must satisfy
F(x+d) ~F(x—d) =n"(1+8)/(1+30) g p-(1+20)/(1+38)c _(logn)/2K® (9)
for n large, where [g,[=<1.
Since f& %#,, there exists constant R such that

[f(x) = f(»)|<R|x~—y|® for any xER!, yER!.

Hence
%4 q <2f(x)d + gdi+e
F(x+d) -F(x—-d =J d { )
( ) ( ) m’f(y) y >of (x)d ~ Gl 2 (10
with G=2R(1+6)!, Thus
dlgan(x)<d29 (11)
where d,. and d, are roots of Egs. (12) and (13), respectively:
2f(x)d + Gd**® = K*, 12
2f(x)d— Gd*+d=K*, (13)
Define
S={x:xCR's f(x)Qn-¥1+38)}, (14)

#) Here we tacitly make the assumption that
c,=0((logn)~1/2nd/u+3s)

Needless to say, this can be done without any loss of generality.
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where Q is a constant independent of n to be chosen later. For x&S, we have f(x)

>0, and it follows from (12) that

K* (,. G t
d = n 6)
=i\ mdt) -

(15)

Since G>0, it follows from (12) that d,<<K*/(2f(x)), Hence from (i5) we have

a,(x)=d, = K? [1+ G_( K% )6]‘1> K* [1_ G ( K* 6],

2f (%) 2F O\ 2f (%) 2f (%) 2f )\ 2f (%)

and we find, from (1) and (16), that

fo< n’z! f(x)[ 2f(x)(2f(x) ]-1'

Since
(2f(%))1*3= (2Q) 1 +on-8(1+8)/(1438)

GK’agzéGn—d(x+d)./(l+sd).
Taking Q =2G''*%, we have
G ( K% )"<L
2f\2fx/ T2
Also, (1-x)"11 +2x for 0<<x<<1/2, Hence by (17)

n’;é':f'“"[l + %(2_;%),,]

From this and the definition ofk,, K*, it follows that

fu)<

k K‘ é
/2p =
fa(x) — f(x)<<2c,(logn)*n nK‘G(Zf(x))

From the fact that f€ %, it follows that f is bounded on R!. Also,

~1/(1433) |

11m k,/(nK®) =1 and K%
foo
From (18) it follows that
Fa(x) = f(x) = O(c,(logn)/2n-9/(1+38))
uniformly for all x in S. On the other hand, writing
g(d) =2f(x)d - Gd'*? -~
we see that g(K%/2f(x))<0, and

g(K%/f(x)) =K% - G(K*/f(x))'*8=K%[1 - GK¥/f**¢(x) 1],
Since
f1+a(x)>Ql+6n—d(1+6)/(1+36)

for x€S,
GK':angan-A(xw)/(usa)<2-1Q1+an—a(1+3)/(1+3a).

© 1995-2005 Tsinghua Tongfang Optical Disc Co., Ltd. All rights reserved.
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From (20)—(22), Wwe see that Eq. (13) has a root within the interval [K®/2f(x),
K®/f(x)]. Hence d,<K%*/f(x), and by (13) we get

K' G ]—1 K. [ G (K’ )a]-x
d = n - 3 < n - .
2 2f<x)[1 2f %) d 2F %) 1 2f @\ fx)

Using again (1 -x)"!<<1 +2x for 0<<x<<1/2, it follows that

d. < 2?5:)[1 f?x)(fK(:c))é]

and from (1) we get

&, G (K&
f,<x)>n1(:f(x)[l (f(x) ] nK' f(x)[ 7(—95(f<x> ]°
Therefore
F.(x) = (%)= - 2¢,(logn) *n-¥ U0 f(x) -~ g G(f(x)) 23)

Similar to the deduction of (19) from (18), we get from (23)
fa(x) = f(x)=0(c,(logn)/2n-2(1+30)) | (24)
uniformly for all x in S.
Now consider the case x€S. Choose ¢ >0 such that
2Qc+Ge'*i=1/2, (25)

Note that the number ¢ so determined is independent of both n and x (Q was de-
fined previously as 2GV(1*8)), As d, is the root of Eq. (12), for x€S we have d,
=cn~10+38) gince

27 (X)cn-V(1438) 4 Gel+an-(1+8)/(1+38)

<(2Qc+Gc“")n‘(1+")’“+3‘” = 9-1p-(1+8)/(1+38)

and by the definition of K% it follows that 2-1n-(1+8)/(1+38) <K% This proves d,>
cn-l/(H»sd), and a”(x)>dl>cn—1/(l+sé). Hence bY (1)

f (x) u nl/(x+3a)<_21€_n a/(1+sa)
Thus we have

17,0 = FG0 | <00 + 1) <5+ © Jnrortivsn (26)

uniformly for all x£S. Finally, from (19), (24) and (26) we see that with pro-
bability one
sup|f,(x) = f(x) | =0(c,(logn)/in-¥1+38)) @n

This proves the first part of the theorem.
For a proof of the second assertion of the theorem. we need the following
tesulty
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Lemma 2 Suppose that f(x)+#0=f7(x) at some given point x, then for any
k,~co and k,=0(n*®) we have

VR T - 10 1/f 0 Ly Neo, . (28)
For a pioof, see [3], Theorem 1. '

Now take a density function f& %, satisfying the following conditions:

a., f(x)=(1+0)]x|%/2, for |x| sufficiently small,

b. There exists x, sonh that f(x,)£0%Ff7(x,),

¢. There exists I such that f(x) =0 for |x|>L,

d. There exists u,v, u<v, such that f(x) =1 for u<x<v,

Let {k,} be any sequence of integers such that 1<k, <n for n=1,2,..., By cho-
osing a subsequence if necessary, we can assume that {k } satisfies one of the
following conditions:

1, k"n-(1+2a)/(1+36)_,°o,

2. k”n-za/(usa)_,oo’ but k".:o(n(uu)/(usd))’

3, k,>o0, but k, =0 (n?¥{1+38)),

4, k,=k for n large, k is a positive integer.

Now we proceed to study these four cases separately:

Case 1. By virtue of condition ¢, we have a,(0)<<L, hence f,(0)=k,/(2Ln),

Therefore
nd/(1+38) lfn(O) ) |>(2L)“’n"/(1+“)n"1k”

= (ZL)-1k”n—(1+2a)/(1+36)__,oo
Case 2. Given e, >0, Take in lemma 1
B=2k,/n, e=gv'k,logn/n,

By the assumptions concerning k, in this case, it is seen that n>>max(B™!,8Be"?),

for n sufficiently large. Hence by lemma 1, for n sufficiently large,

P (Wz——*?ogn sup{|F,(b) - F,@ —F® - F@) |:0<F(b) -F(a) <2kn/n}>el)

)-

This quantity is of the order o(n~2?) by virtue of the assumptions of this case.

-1 2
<16n® exp(— ein'k, (logn) >+8n exp(—

k.,
128k n~! + 4ekl/?n-tlogn 5

Hence
sup{ |F, () - F (@) - F) - F(a) | :0<<F(b) —F(a) <2k, /n} =o(n"'kY{%logn). ass.

In the present case it is easily seen that n~'k!/2logn=o(k,/n). Hence with proba-

bility one, in order that d can be the smallest number to satisfy

Fn(d) —F"(*d)>k"/n
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for n large, d must satisfy
F(d)-F(-d)=k,/n+0,n" 'k*logn, 6.l <1, (29)
From this and the assumption on k, in the present case, and note the condition a,
one sees that d is small when n is large. Hence for these n
F@) -F(-a)=[ fnay=an,

Therefore d is the solution of the equation

dité=Ik /n+0,n 'kYlogn
and for n sufficiently large,

a,(0) = << (2n"/n)1/(1+6).
Hence it follows from (1) that

7. (0) = k'—«>%(

k, \&/(1+8)
2a,(0)n ) *

n
Since k n-2¥01+38)»006, we have

nd 3 [ £ 0y -~ f0) ] = nd/+38 ¢ (0)—>o0.

Case 3. Since k,—>o0,k,=0n*¥ !+ )and 28/(1 +36)<<4/5 for 0<6<1,lemma 2
can be employed at point x,, and k¥2(f,(x,) —f(x,,))/f(xo)-iN(o,l). Since the sup-
port set of N(0,1) is R!, f,(x,) — f(x,) cannot, with probability one, have an order
O(k;m‘) = O(n"’"“s‘”).

Case 4. Choose arbitrarily y € (u,»). Define

Y. =§{i:1<i<m [X;~y|<k/(4m)}).

Then by condition d and the well-known fact of approximating binomial distribu-
tion by Poisson distribution, one sees easily that

limp(Y,=k) =e*(k/2)*/k|£A>0. (30)

n-

Since P(a,(¥)<k/(4n))=P(Y,=k), one sees from (1) that, with probability not
less than P(Y,=k), f.(y)=k/{2n(k/4n)} =2, Hence it follows from (30) that for
n sufficiently large we have

. -f» =2-1=1
with probability not less than A/2>0.

Summing up the above discussion. We see that in no case is the assertion
sup |f, (%) — f(x)| =0(n-/u+s8)y, a.s.
x

true. This concludes the piroof of the theorem,
Remark, The method of this paper can equally be employed in the case of
high-dimensional densities,

© 1995-2005 Tsinghua Tongfang Optical Disc Co., Ltd. All rights reserved.



68 BEMWHREYE FE e 198 34

References

[1] Loftsgarden, D. O. and Quesenberry, C. F., A non-parametric estimate of a multivariate den-
sity function, Ann. Math. statist. 36 (1965), 1049—1051,

[2] Devroye, L. P. and Wagner. T. J., The strong uniform consistency iof nearest neighbor
density estimates, Ann. Statist. 5 (1977), 536—540.

{38] Chen Xiru ([5#7%) Convergence Rates of Nearest Neighbor Density Estimates, Scientia
Sinica, 1982.

{4] Devroye, L. P. and Wagner, T. J.,, The strong uniform consistency of kernel density
ostimates, Proc. of the fifth inter. symp. multi. analysis (1980), 69—T7,

RENREEGHIN—HBEAER
% # %

B X #® =

B Xy, X, RAREERHK f W—f R iid. 2, 1965 42, Loftsgarden
FEDIPRETOTRMGET F0O WHE: BERR /DK GE) =06,(%X,,,X,), #EEK
Al [x-a,(x)y, x+a,(X)IHEDIPEE X, -, X, FOK, MER, ik, A—EHHEN
BE, 1<k, <n, RABUJ.() =k,/{2na,)} 1Dy F00O WhTE, XAEHBERED “R
AP, F—RIEEMATRMEHOEEE, RXMEEE B PHATXFE 7 1
—BCGRNSCEE, BHTOSER, AP, RNBFRKFT ERER,

EBE R0Lo<l, U F, BHEHR o U Lipshitz K 4i— B RE FREA K.
FHE

k’n - [n26/(1+86)j

WHEMER >0 B

sup|f,(x) - f(x)| =0(n~¥(*3%) (logn)V*c,), a.s.

SHEM fEFye B—HE, WM, 0<K6<1, TARE FEF,, ERLERE &K,
TRE =

Sup|f.(x) - f(x)| =0om-¥0+38)), q s,
AT ERL L.

AEEYH, WHWE 6 U Lipshitz ZANBEREEREROLETS, KEHER
BB 0o/ (430 thgsesr 6/(1+36) BETMSH., Yo=11, XMIR1/4. X
Gy BIEEE (3] REI—MERNEBRA.

X, AXFENCELHET FHBESMETEER.



