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The best possible rate of convergence of the distributions of error variance estimates in linear
models, based on the residual sum of squares, is obtained under weakest possible conditions.

1. Introductlon

Consider the linear regression model

yi=xiBte,, j=1,0,h,0 (1)

where{x;}is a sequence of known p-vectors, 8 is an unknown p-vector, {¢;} is a
sequence of independent random errors, with

E(e;) =0, Var(e) =o%, 0<<o*<<oo, j=1,2,-, (2)
Denote
X=X 3 - 1 X,), r,=rank(X,),
Y= (Viso sV, € = (&, e €.),

Using the first n observations in (1), we obtain an estimate of 0%, based on the
residual sum of squares, as follows:

R
"on-r,

PR PXLEDY
" Y=l

i=1

Q

Y(n)/ (In - X{l (XIX’H ) _X,,)Y(,,)

(iilanikek)z}9 (3)

"

with
1, when j, =j,

n
Zauinhani:h = {
k=1

Also, r,=r<p for n sufficiently large, so we can write r instead of r, in (3) for
such n,

0, otherwise

*Recelved Dec, 29, 1981.
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70 BEPRES WL 1938 34

It is well known that E(62) =0?, Standardize 62 to Z,= (6% ~0%)/\/Vvar(g?).
It presents no difficulty in proving the asymptotic normality of Z under suitable
conditions, i, e,

b

lim||G, - @[ =lim{sup|G,(x) - D(x) [} =0,

where G, is the distribution of Z,, and @ is the standard N(0,1) distribution, More
interesting and difficult is the problem of rate of this convergence, This problem
was first considered by P. L, Hsul!, in the special case where p=1, X;=X,=+=1
and{e;} is a sequence of iid, variables with

E(e) =0, 0<Var(e)) =020, E(ef)>0*, E(e})<co,

Hsu obtained the best possible rate of Q(n~/*) in this simplest special case of(1);
In 1979, Schmidt!®! studied the general case. He obtained a rateQ (n~"™©"+?) under
the conditions that {e;} is an iid, sequence and E(ei")<<co, with m=3 a positive
integer,

The purpose of this article is to study this problem under weakest possible
conditions, Our result, summarized in the following theorem, gives a complete
solution of the problem:

Theorem Suppose that

1, g is an even nonnegative function defined on R!, g(x) and x/g(x) are non-

decreasing for x=0, and lim g(x) = oo,

X o0

2. {e;} is an independent sequence satisfying (2);
3, There exist constants D,<oco and D,>(0, such that

LS Blets(eh)sD, (1)
i=1
—i—Zd}___Z_Dz, with d} =Var(e}) =E(e}) —o*, (5)
=1
Then
IGa— Dl =0(1/8(+/"n)), (6)

with G, and @ defined earlier,

Note that we obtain the Berry-Esseen bound O(n™"2) in the special case g(x)
= x|,

2. Some Lemmas

In the following we shall emplay the symbol I, to denote the indicator of A.
and C to denote some constant not depending on n but may assume different values
on each appearance,

Lemma 1 Suppose that e, e,, - are independent and satisfy the conditions
(2)y (4), (5), Define
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éni =€il(jes1zmins j=1ye,m
Cni=é£i—E(‘éﬁi)9 7i=1""9n
=>4}, o2, =Var(l,), a,;=E{C;8C))s

1=1
" n
B3 — 2 —
ng, = E:ani, na, = E:ani!
1=1 i=1

Then there exist constants D,>0, D}>0, b;>0, j=1,2,3, such that

Bi<D,, (7)
|B:-Bil<c/g(vn) (8)
B:=Dj, a,<D!} (9)

for large n. Further, the set
A,={j:0%; Zb,, an;Sbsy 1=jsn} (10
contains at least b,n elements.

Proof Choosing suitable m>0 such that g(m)>0, we have

,|____ nZE{e I(¢’<m) f+ ZE{G I(">"')}

i=1 I“l

=m’+ > E{efg(e}) }/ng(m)y<m* +D,/g(m).

1=1

This is (7), Denoting by F; the distribution of e;, we have

|B§_§:|éiZ{E<e;)_E(? nij )}+_Z{O‘ Ez(é 7)}

i=1 j=1

1 n
S—E J’ x
- n lxl>n‘“

1=1 =1

20
Sng(\/ )E_/E{elg(e )}+ns/zg<\/n)ZE{6,g(e )}

J=1

X2dF (%)

!xl>n1/‘

=D,(1+20%/g(v/n),
which proves (8), The first assertion of (9) follows from the definition of B2,
(5) and (8), For the second, note that

[.i|=é&%, when &, Z:E(€};), while|l,/|SE(¢};)<0*
when &}, <E(é%;), Hence

1
a, 721 {E278CT 2y sy T ZE{C 18 3y pasy

I"l.

%Z E{é:;8(8%; )}+——Za‘g(02)<D +0tg(o*),
i=

i=1
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72 MEMASFIL 19834

Turning to the last assertion of the lemma, we denote by#(A) the number of
elemen's contained in set A, Putting

A, ={j:1SjSn, o =Di/2}
then

j=1 iEAln
1 1
S5 D8+ 2 E{G i Tumen} + gy ,,g(k) ) IS T-L()
j€dAm j€dm
<D+ (A,)/n+D/g),
0
Choose k>0 such that g(k)=>__3£°l . We see that # (A,,)=¢e,n, with ¢ =DJ/(6k?).
2

Further, put ¢,=¢,/2 and
An={j:15j=n, a,;=D}/e,},
We see from the second inequality of (9) that # (A,,) =(1 —&,)n for sufficiently large
integer n; Therefore,
# (An N A.2) Zen/2, for large n,
So the last assertion follows by taking b,=¢,/2, b,=D}/2, and b,=2D!/¢,,
Lemma 2 Suppose that the conditions of lemma 1 hold, and {a,,,6} satisfies

nav
n

Zaﬁuv=1, U=1,%,T3 N=1,2,

=1

Then there exists constant I, not depending on n or {a,,,} such that for n sufficient-
ly large,

% (A.NH,) =bn/2, an
where

H,={v:1Sv=n, a2, SL/n for u=1,-,r},

Proof As >a2,,=1, for any R>0 and u=1,-,r, We have

ve=1
# ({v: 1=v=n o}, ZR/n})=n/R,
Hence, on putting
J.p={v: 1Sv=n; a},,ZR/n for some u},

we have § (J,z2)<rn/R, Taking R=2r/b,=L and employing the last conclusion of
Lemma 1, one sees that (11) holds for n sufficiently large, Hence the lemma is
proved,

In the following i denotes / -1 .

Lemma 3 Suppose that the conditions of lemma 1 hold; Write ¢,;(¢) for the

c. f. of £,;, There exist >0, A>0 independent of n such that for each j€ A, we
have
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| am)|sem -asm, wmen 161550 7om

Proof By definition |Z,;|Sv'n, so |&,il/g.nDSvn/g(v 7)., Noticing
that B,=/D;, and o}, =b,, a,;<b, for jCA,, We have

[t1°E1L.;1° _1t1°E{C%;8(L.i)} by|t|®
|¢n1 \/“B) 1+ ZnBz tzl nS/ng é ng(\/_rf)B,’. =D28/2n8(\/7)-

Taking A=0b,/(4D,), N=by/ D, /(4b;), we have for [t|<ng(v/n),

S lzll t" bsltls
l"’-l \/nB)l 1= 2mBE ¥ * Difng(/m)

S1-b,t2/(2D,n) +b,t*/ (4D,n) =1 - Att/n=Zexp( — At*/n)
and the lemma follows,
Lemma 4 Suppose that the conditions of lemma 1 hold, write
Sa= D 6uil (/B
i1
whose ¢, . is denotcd by f,(¢t), Then thete exists 71>>(0 independent of n such that
for n sufficiently large

[ lT® - exp(~ /D) |d=e/g v n ).
{tisa(v/n)n

Proof Put
$u= D80/ (VBB L= D E|L.i1%/ (O EEE ),
i=1 f=1 =1

Denote ¢; f. of §, by }.(t), then by lemma 1 of [2], p. 109, we have

|.(t) —exp(—1t*/2) | <16L,|#|%exp(—1*/3), for|t|=< (4L,)"',
Since |£,;|<+v/n, g(x) and x/g(x) are non-decreasing for x=0, it follows that
[CilsvnglCil)/s(vn). By (9), We have

L. -—ZEIC 113/ (n*2 B} )Szan,/[ng(\/n)(D )2ISDY/[e(v/ ) (D],

i=1
Choosing 1, = (DJ)¥*/(4D?), we have for |t|<n,g(+/n)
[7.(t) - exp(—1*/2) | Sc|t| exp(-*/3)/g(v/ ),

By (5) and (8), we have |1~ B,/B,|<11-B2/B2|<c/g(v/n)Si1/4 for n sufficiently
large. Choose n=41,/5, then |§,t/B,|<ng(,/n) for [t|=ng(,/n), Since |e*—-1}|
<|x|e™, we have for |t|<Tng(,/1);

|f.(t) —exp (-*/2)| = |7.(B.t/B,) —exp (~ B2t*/2B%)|

+ lexp(~ Bit*/2BY) —e~"*| <c|B,t/B,|*exp(~ B2t*/3B2) /g(v )

+e "2 (t*/2) |1~ B%/B}| exp (¢« |1~ B1/B%|/2)

Sc(e?+[t]®) exp (~t2/4) /g(v/n)
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and the lemma is proved.
Lemma 5 Suppose that the conditions of lemma 1 hold, and

E{e g(e )}<CQ i=19"';m, m=<..-n- (12)

n
Further, let a,;, j=1,--,n, n=1,2,., be constants satisfiying >)a?,<1 for
i=1

all n; Writing
er; =&,;—E(2,)),
then

i [
B(Xauer;) Sevw /e,
=1
Proof, we have

E( Zanleni)esza NACIN +15Z“ ;E(eni)‘za jECeqs)?

+20( Z!a,,,-l“‘Ele 5 132 +90¢ Z“ 1ECen)™?
j=1 j=1
a5 +J,+J+ 1,

Since Ele%;[°<2°Ele,;|° &},<v'n, &%,/g(€i)=vn/g(v/n), from (12) we

have

= 64/ &
Jé_zga HE@D ST ny za yE{84,8(82))}
64\/n
= g(v/n) Z“ jE{etg(eH}<64Cv/n /8¢ 1),

i=t

Also, Za ,E(e,,,)2<Za ,E(e?):azza,,<a , hence

i=1

J, <1502 at; E(el ,)‘<2400’Za JE@.)*
i=1

_§2400220:1[E{é:j1 Y+ E{&;8(2)}/g(k)]

i=1

=2400%(k* +c/g(k)),

‘:l'qsk)

where k>0 is chosen to make g(k)>0, Similar estimates hold for J,,J,, and the

lemma is proved,
Lemma 6 Suppose that the conditions of lemma 1 hold, then

v 1B,/ var{(n—-r)62} ~1[=0(1/g(v/ 1)), (13)
Proof Write E(e}) =¢;0%, and
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In_X{l<XnX:)-Xn=Mn=(mnm))’ u,v=1,--~,n,
Then by the well-known formula
Var {(n-r)é%}=Var {e/,M,e}

—o‘-{Z(d,—S)m ,,+2Z Zm,,,,,} (14

i=1

As M, is symmetric and idempotent, one sees that

> miy=tr(M,M4,) =tank(M,) =n-r. (15)

Jok=1

Remembering (3), we have m,;; =1~ > a2,;, and
U]

miii=1- ZZII wi T ( Za i)’y (18)

U] =y
1- ZZa,,,,sz <1+r Za,,,, . an
um]

1t follows from (14)—(17) that

Var{(n—~r)§2} = a{Z(d,-l)m,,, 2Zm,,h+2(n—r)}

Zo* {Z(d,—n-zZ(o,—l) ki ZrZZam 2+ 2(n- r>}

i=1 =1 u=
Choose k>0 such that g(,/ %k ) >0, write w=g(,/k )/+/k and we have for n suffi-
ciently large
}

0,0'=E(e}) =Efefl,,, ..} +E{efl

{e}siv (e3>v7)

_ — n
Svn 0"+ E{efa(eD }/s(/m) Sy (Wok 4 D)),

Also, Z(o - 1)ot = Z‘,Vaﬂe’) nB:, andZ Za...,-—r,

f=l uey
we get
_2m
Var{(n—-r)G:}=nB2 - TV =—(wo*+D,) - 2r(r+1)0t, 18)
A similar argument leads to
Var{(n—-r):}<nB:+—— g(\/n) ——(wo? + D) +2ro*, (19)

Since B2=D,>0 and g(y/n )—>oco0, (13) follows easily from(18) and (19),

Lemma 7 Let w,=w, +w,, n=1,2,, be a sequence of ramdom variables;
w,, W,, possess distribution functions H,, H,,, respectively; Further, suppose that
{H,.- ®|| =0(1/8(+/ %)) and there exists constant k such that p(|w,,| =k/gs(/ 7))
=0(1/g(+~/n)), Then
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H.— ol =0(1/8¢v/ 1)), (20)
Proof Evidently
H,(x=k/g(v/ 1)) - P({w,,| Zk/g(v n))SH,(X)
SHu(x+k/g(v/ ) +P(|w,, | Zk/g(v 1))
and
|@(x+k/8(/ 7))~ D(X)|<k/8(v/n),
from which (20) follows easily,
Lemma 8§ Let Z, be a random variable with distribution H,(x), w,=¢,Z,+1,,

when @,>0 and b, are constants (n=1,2,++), Supposing that

la,— 1] =0(1/g(v/ 7))y b,=0(1/8(/ 7)),
|H,~®ll=001/8(v 1)),
then
|H.-dl|=00/8(v/7)),

where ff, is the distribution of w,,
The proof is easy and therefore omitted,
3. Proof of The Theorem
By lemmas 1 and 2, there exist constants L>0, b;>0, j=1,2,3, such that
# (An)..Z_.bln! # (An an)_Z_bln/zi
where A, and H, were defined earlier, Putting
I, ={v: 1Sv=<n; E(eig(e}))=4D,/b,},
then % (JI,)<b.n/4, hence
$ (A NH, =TI, =bin/4,
Pick arbitrarily ¢, =min (n*3/g(v ), bn/4) elements from the set A, H, 7/, to
form a set JI7, and define JI,={1,2,*,n}—JI, - JI% Obviously

#(T,NA)2bn/4,
Define

S, = ZCM/(\/T{Bn)y
j=1

r

2,283 3 6,02t/ (VB
1

U - velln

20 =3 trets) (B,

“=1 "vel,

2t =83 (2 ewmer) 1B,

s=1 yeln
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0¥ =5,~23(Dawel.) /(v B,

Um=1 ‘U=]
T.=8,— A~ A%,
Then
T.~ AYSQSS,.

Now we proceed to show that

sgplP(Q‘..”éx) ~-0(x)| =01/8(v/ 1)), 1)

Denote the ¢, f; of S, and T, by £,(t) and %,(t), respectively; Choose >0 such
that the conclusion of lemmas 3 and 4 are true; Then we have for n large,

f L.t — et ldt =01 /a(/ 7)) (22)

itis ngtynd ltl ”"
and by Berry-Esseen,
sup| P(S,=x) - @(x) | =0(1/8(vn)). (23)

On the other hand, by Markov and Marcinkiewicz inequality, we have

PUA% Z8 (V) SCE (VRN 2 3TE (D] a,,6%,)°

u=1 vElln

SCe (Vv nHnT DTE (D al,en)?

=1 ven}
Scg?(VamT iR () end)®
velly

Scet (v n)n Tl > E(es,)

vEll,
Scet (Vv nun i (v [8(v/ 1)) D E{ér.8(82,)}
scg*(vn)n'ul, -
If p,=n"*/g(v/n), then
P(lATlze (v ))=c/g(v/ 1),
If p,=bn/4, then g(v/ n)<4n'?*/b,, and
PUAT I Zg" (v =cg* (V) /mEC/e(v ),

Hence we have P(|A%| =g (v 1n)=0(1/8(v/n)), By lemma 7, the truth of (2])
follows from
Sup|P(T,=x) ~0(x) | =0(1/8(v/ 1)), (24)
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which we now proceed to prove, According to Berry-Esseen, we need to show that

for n large
j‘,”s s —I%l |9.(2) —e ™| dt=0(1/8(v/ 1)), (25)
We have
[ Al -
HERTI&)) ltk
< Iy — et d
It n9¢/n) Itl
+J _-*L—IE{e“"'(l-e““‘”')}]dt
lﬂsanu)!t‘
+J‘Hlsny(¢‘)_—ﬁl IE{e“”"_A"‘)(l—ehi"'")}]dt=]l+]2+13. (26)
From (22)

J1=0(1/8(v/n)), (27)
Putting h=b;A/4, using lemma 3 and observing that JI,NJI%’ =& and I, NJ,=8,

we have for n large

1 — .
< . i z: . —eitam| g
12=L”5”(“) [t] | E{exp (it Cui/v/n B E[1-e |dz

FE€ElnN An

IA

J _ {exp(—at*/n) gl AL | dt

Itlsngwm

<

r 2
e~ ht* { ( " ue:”) }dt
v'n Lilsna(d;) E Z Z Gns

%=1 "ven,

IA

e = 0 /p0 ), (28)

IA

For estimating Jj,, consider two cases:
1, #,=bn/4, In this case g(/n)<4n*/b, and

i . 7 dt
Jsgjmw(m |E{exp(it 3 £,;/v W B} ElA,]

jeny,
C - .
< < o s Vs
=\/nj,,,§mm (exp( - At*/n)) E{Z;(%;ae)}
C (" _inas_ . .
é\/ﬂ'oe Wt =0(1/v ) =0(1/e(+/ 7)) . (29)

2, b,=n*/g(v/n), Inthis case g(+/n)>4n'*/b,, Noticing that JT,NJ}=Q,
by lemma 5 we have
E(AD =0(n g™ (v n)).
Hence
E(ADS(EADY =038~ (V/ 1)), (30)
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Now note that
nsf o B(eten A dt
ltl=sng/n)
+| |£] | B{eirersg, A2 | dt
ltlsagm)
=J,+Js 31

Here |9,/<1, and ¢, depends only on {e*, : v €JI, }, Thetefore 9,, {e,: v€J/} and
{L,, : v &€ JI”} are mutually independenty; Hence
| E{eiten-a09,A2} | SE(A2) |E{exp(it 3 £,,/v/ 7B} |
vemny
SCngm () {exp(— At /m)} n'/g(v/'n)
gcn‘2’3g‘2/3(¢7)ex:p(—An“stzg‘l(\/?f)),

So, remembering that g(x) =Q(x) as x—»>co, We have

Jooner _ltle|E(e'f0m 4, AL} |dt
guryn)sitisngWn)

§C11‘2/3g"2/3(VW)eXP(-AWI/S)J _ lefdt
HIisnr6(/n)

Sontig (W yexp(— anHy = 0@V )). (32)
Using again g(x) = 0(x),

|t]e|E{et*“ kg, AL} d1

Itlsg12 /)

e

IA

[, [ HIBCAD dES R ()8 )

=0 (v n))., (33)
By (31)—(33), we get

Js=0(g (v 1)), (34)
Further,
| B{eitor 4024} |
§\7C—~‘Z Z a2, |E{e*? exp(it(S,~ AL))}|
h =1 VEln
\/(LZ > b | < | E{er ek exp(it(S, - 4%)) }
n Um] RS
v, v €Elln
= Mir s (35)
where

C « . _
MiS7>, 2 ehulE{lexp(it >0 Li/v/nB)}
v um=1 VEDm FENnDAmi>r

x |E{exp(itZ,,/v/n B,)eq i}
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<Cs

S5 Satalexn(- 4t/ e (36)

He] =)

é;/%eXp( - ht?),

Likewise,
M, S —exv( htz)Z(Z Ia,..wlq..,) @37
$m] Ym}
where q,,= |E{e¥ eexp(itf,./ W B.)}|.
Since
4%, S (E|er L., )2/ (B SCen 't E(ent)E(LE,) SCnlotdlt? (38)

(for the meaning of d,, see (5)) by (37), (38),
Mzgwexp( htz)z Z a,, Zq,,,__———exp( ht? )it~ Zd
Nm] pe) "-1

anceEd‘ O(n)(which follows easily from (4)), we get

ve1’

[
M:S 5

From (31), (35), (36), (39), we get

tlexp( - ht?), (39)

[
J g—‘—"—
Y=V Hnsrewm

=c/vn =01 Gr)). (40)

(1+1t2)exp( — ht*)dt

By (31), (34) and (40), we obtain again for the present case
=08 ' (v n)), (41)

From (26)—(29) and (41) we finally get (25), which in turn proves (24) and
eventually (21), as stated earlier,

Now define
1 r n
QW = (’Z.zé i~ (m—r )0’)—7ﬁn—'§(§am uu) (42)
We have

(et -rmr) s

é(g (0*—E(&3;)) + faz)/\/TBn

-(>f nRiEere) [,
i-l x L
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1 1
< —
= nB, (\/ng(\/n ) ;E{e g(ei)}+m)
1 Dl\/vrT —
<— — 2) = -1
=\/nD2(g(v/n) +10%) =087 (/7). (43)

By Cauchy-Schwarz,
2
= 7. 2 . .
|EC&,)|*= (jlx|>n1/4xd1 ’) éjlx»,.lux dF’Lx»,.mdF’

tgp.< L prokgcet
éjlx]:-ni“xdF’§¢Wg(¢ﬁ)E{eig(ei)}.

Hence

( ) = (__,ame*+iﬂ<é,.,.>)2

Vel

§2(Z":a,u,e$., )2 + z(znja,.wE(éw))z
v=1 ve=}]

§2(Zame‘.‘v\z +23 B2 (8,2 (Zameiu )2 +2D /8, (4
v=1 v=1 v=1

Form (42)—(44), and B,=./ D; >0, we see

C

Q("l) g(\/ ‘2(2)<S +__,* (45)

g(vn)-
By (21), (23), (45) and employing lemma 7, we obtain
snp| P(QPEx) -0 (x) | =0 (v 1)) . (46)

Let
Q¥ =(m=-r)(6s-0*) /v nB,
1 r

=" nB. (,-Z,e% ~(n—r)o*) — V%'E:Z(Zanwev)zo (47)

uw] U=}

Comparing (47) with (42), one finds that the diffrence between Q¢*’ and Q¥ lies
only in the fact that &,; in Q¥ is replaced by e; in Q¢{*’. Hence for every x,

PO =x) - P(OP=Ex) | S D Ple;*é,;)
j=1
n 1 n _ .
-—S—iZIJ’,,bn1,4dFj§,,ng;7;T‘)§E{e;‘g(6,@) }=0@(vn)),

From this and (46) we obtain

sup | P(QY=X) -0 (X) [ =087 (v n)) (48)
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Finally, we have

. S nB,
Z,=(62-0% /v var(g?) = (n—f\)/\/nvar(éz) o, (49)

By (13), (48), (49), and employing lemma 8, we reach (6), This concludes the
proof of the theorem,
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