Characteristic Semi - simple Lie Algebras and Completely Semi - simple Lie Algebras over any Field*

Lu Chaihui (卢才辉)

(Beijing Teacher's College)

In this paper, we study some properties of the finite dimensional characteristic semi-simple (C.S.S.) Lie algebras and completely semi-simple Lie algebras over any field. The definitions and some results of these algebras have been given by G: B: Seligman in [1].

We can easily prove the following lemmas.

Lemma 1 The centre of any finite dimensional Lie algebra L is a characteristic ideal of L.

Lemma 2 The centre of characteristic semi-simple Lie algebra is zero.

Lemma 3 If D is the derivation of Lie algebra L, then [adx, D] = ad(xD), for any $x \in L$. (See[2]).

Theorem 1 Let L be a finite dimensional Lie algebra over any field F, the centre of L be $\{0\}$, and $\mathcal{D}(L)$ be the derivation algebra of L. Then $\mathcal{D}(L)$ is semi-simple, if and only if L is C. S: S.

Proof " \rightarrow ". Let R be the characteristic radical of L, for $\forall x \in R$, $\forall D \in \mathcal{D}(L)$, we have $xD \in R$ and [adx, D] = ad(xD) (lemma3), but $ad(xD) \in adR$, so adR is the solvable ideal of $\mathcal{D}(L)$; Since $\mathcal{D}(L)$ is semi-simple, it follows that adR = 0 and R is in the centre of L; Hence R = 0 and L is C. S. S.

"\[
\[
\begin{align*}
\[
\begin{align*}
&-\limit*_* ad \$L\$ is the ideal of \$\mathcal{D}(L)\$. \$L\sum_* ad\$L\$, since the centre of \$L\$ is 0. Now assume that \$R_{\mathcal{D}(L)}\$ is the radical of \$\mathcal{D}(L)\$. Let \$R = R_{D(L)} \cap ad\$ \$L\$, \$R\$ is solvable ideal of \$\mathcal{D}(L)\$ and ad\$L\$; Put \$R = ad\$ \$L_1\$, then \$L_1\$ is the solvable ideal of \$L\$. For any \$D \in \mathcal{D}(L)\$, any \$x \in L_1\$, according to lemma 3, \$ad(xD) = [adx, D] \in R\$, thus \$xD \in L_1\$ and \$L_1D \subseteq L_1\$ and therefore \$L_1\$ is the solvable characteristic ideal of \$L\$. But \$L\$ is \$C\$. \$S\$. \$\int\cap\$, then \$L_1 = \{0\}\$; Hence \$R = ad\$ \$L_1 = 0\$, it follows that

$$[R_{\mathcal{Z}(L)}, \operatorname{ad}L] = 0, \tag{1}$$

For $\forall a, b \in L$, $\forall D \in R_{\mathcal{D}(L)}$, we have [a,bD] = [a, b]D - [aD,b] = a(ad b)D - aD(ad b)= a[adb,D] = 0 (according to(I)); bD belongs to the centre of L, since a is any element of L; Therefore bD = 0; but b is any element of L, then D = 0 and $R_{\mathcal{D}(L)} = 0$, hence we find that $\mathcal{D}(L)$ is semi-simple.

^{*} Received Aug. 27. 1981.

Jacobson has given an example in [2] to show that in the case of characteristic $p \neq 0$, there is semi-simple Lie algebra L, which is not the direct sum of simple ideals. Furthermore, if L is C. S. S. over the field of characteristic $p \neq 0$, but not semi-simple, according to Theorem 1, we know that the derivation algebra $\mathcal{D}(L)$ is semi-simple. But its ideal $\mathrm{ad} L \cong L$ is not semi-simple. These facts show that the principal structure theorem of semi-simple Lie algebra, which has been obtained in the case of characteristic o, cannot be generalized to any field. But we have the following two theorems:

Theorem 2 Let L be a semi-simple Lie algebra over any field; Then L is the direct sum of simple ideals, if and only if L is also completely semi-simple;

Proof The necessity is evident. We now prove the sufficiency as follows. If L is completely semi-simple, according to the definition (See[I]), L has the decomposition: $L = L_1 \oplus \cdots \oplus L_i$, where L_i , $i = 1, 2, \cdots$, s are ideals of L, and characteristic simple. If there exists L_i which is not simple, then L_i has proper ideal $R \neq 0$. Seligman has proved in [1] that any proper ideal of the characteristic simple Lie algebra is nilpotent ideal, so R is the nilpotent ideal of L_i . It is easy to see that R is also the nilpotent ideal of L, which is in contradiction with semi-simplicity of L. Thus all of L_i are simple ideals of L:

Theorem 3 If semi-simple Lie algebra L is completely semi-simple, then any nonzero ideal of L is semi-simple,

Proof We know from theorem 2 that L is the direct sum of the simple ideals: $L = L_i \oplus \cdots \oplus L_s$. $L_i \neq 0$, $[L_i, L_i] = L_i$. Let A be any nonzero ideal of L. It is easy to see that there is one L_i at least so that $A \cap L_i \neq \{0\}$, and so $L_i \subseteq A$. Now suppose L_{i_1}, \cdots , L_{i_k} are contained in A, and the rest $L_{i_{k+1}}$, $L_{i_{k+2}}$, \cdots , L_{i_s} are not contained in A. Then

$$L_{i_1} \oplus \cdots \oplus L_{i_k} \subseteq A, \tag{2}$$

for any $L_{i,k+1}$, j=1, 2,..., s-k we have $A \cap L_{i,k+1} = 0$, hence $[A.L_{i,k+1}] \subseteq A \cap L_{i,k+1} = 0$ and therefore

$$[A, L_{i * n} \oplus \cdots \oplus L_{i *}] = 0, \tag{3}$$

for $x \in A \cap (L_{i_{k_1}} \oplus \cdots \oplus L_{i_s})$, using (2) and (3), gives x = 0, thus $A \cap (L_{i_{k_1}} \oplus \cdots \oplus L_{i_s})$ = 0. This shows that $A \oplus (L_{i_{k_1}} \oplus \cdots \oplus L_{i_s})$ is the direct sum of linear spaces: $L = (L_{i_k} \oplus \cdots \oplus L_{i_s}) \oplus (L_{i_{k_1}} \oplus \cdots \oplus L_{i_s}) \subseteq L$. Using again (2) and the relation of the dimensions, we can obtain $A = L_{i_1} \oplus \cdots \oplus L_{i_s}$. Now assume that R is any solvable ideal of A, thus $[R, L] = [R, A \oplus (L_{i_{k_1}} \oplus \cdots \oplus L_{i_s})] = [R, A] \subseteq R$, Hence R is the solvable ideal of L: But L is semi-simple, it follows that R = 0 and A is semi-simple.

References

- [1] Seligman, G. B., Characteristic ideals and the structure of Lie algebras, Proc. Amer. Mathsoc, 8 (1957), 159-164.
- [2] Jacobson, N., Lie Algebras, Intercience, New York, 1962.