Ring-like Space Constructed from Group-like Space*

Liang Deyu (梁德有)

(Jinzhou Teachers College)

The ring-like space introduced in[1] is more extensive than the topological ring in view of the definition. But, in face, it has not been shown whether the ring-like space is really more extensive than the topological ring. In our study, we first investigate a method of constructing a ring-like space from a group-like space. Then, using this method, we construct a ring-like space which is not a topological ring.

The definition of the ring-like space^[1]. Let R be a topological space, e be a point in it.Let α , $\mu:(R\times R,(e,e))\to(R,e)$ and $i:(R,e)\to(R,e)$ be continuous functions satisfying the ring axioms up to homotopy. Then R is called a ring-like space with respect to those continuous functions.

1°. A Method Let G be a topological space, let a continuous function $\alpha: G \times G \to G$ be homotopy associative, that is, $\alpha \circ (\alpha \times 1) \simeq \alpha \circ (1 \times \alpha)$. The disjoint union of G and a point $e \notin G$ is denoted by G^+ . G^* has the induced topology, that is, a subset $S \subset G^+$ is open if and only if $S \cap G$ is open in G. If $x,y \in G$, $\alpha^+: G^+ \times G^+ \to G^+$ is defined by $\alpha^+(x,y) = \alpha(x,y)$ and $\alpha^+(x,e) = \alpha^+(e,y) = \alpha^+(e,e) = e$. Then α^+ is a continuous function and also is homotopy associative.

It is by $G^{\infty} = \bigvee_{i=1}^{n} (G^{n})^{+}$ that the disjoint union of all $(G^{n})^{+}$ is denoted except e that is the common point. G^{∞} has the induced topology, that is, a subset $S \subset G^{\infty}$ is open if and only if $S \cap (G^{n})^{+}$ is open in $(G^{n})^{+}$ for each n. By the definition of G^{∞} , for each $x \in G^{\infty}$, either x = e or there exists n such that $x \in G^{n}$, that is, $x = (x_{1}, \dots, x_{n}), x_{i} \in G$. In G^{∞} , it is defined that $(x_{1}, \dots, x_{n}) = x = y = (y_{1}, \dots, y_{m})$ if and only if m = n and (y_{1}, \dots, y_{n}) is the rearrangement of (x_{1}, \dots, x_{n}) . The quotient space resulted is still denoted by G^{∞} .

In G^{∞} , functions β , $\mu: G^{\infty} \times G^{\infty} \to G^{\infty}$ are defined by $\beta(x,y) = (x_1, \dots, x_m, y_1, \dots, y_m)$, $\beta(x,e) = x$, $\beta(e,y) = y$, $\beta(e,e) = e$ and $\mu(x,y) = (\alpha^+(x_i,y_j))_{i,j} = (\alpha^+(x_1,y_1),\dots,\alpha^+(x_1,y_m), \alpha^+(x_2y_1),\dots,\alpha^+(x_n,y_m))$, for $x = (x_1,\dots,x_n) \neq e$, $y = (y_1,\dots,y_m) \neq e$. It is easy to check that β and μ are continuous functions, β is associative and commutative, and μ and

Received Sept. 23, 1981.

β are distributive.

Let (x,y), $(x',y') \in G^{\infty} \times G^{\infty}$. It is defined that $(x,y) \sim (x',y')$ if and only if $\beta(x,y') = \beta(y,x')$. It is easily checked that this relation is an equivalence relation. Suppose the quotient space $R = G^{\infty} \times G^{\infty} / \sim$. In R, B, M: $(R \times R, (e,e)) \rightarrow (R,e)$ and $\triangle : (R,e) \rightarrow (R,e)$ are defined as follows:

$$B([x,y],[u,v]) = [\beta(x,u),\beta(y,v)],$$

 $M([x,y],[u,v]) = [\beta(\mu(x,u),\mu(y,v)),\beta(\mu(x,v),\mu(y,u))], \quad \triangle([x,y]) = [y,x],$ where $[x,y],[u,v] \in R$, the base point of $R \in [x,x]$.

It can be shown that B, M, \triangle are continuous functions and R is a ring-like space with respect to those continuous functions. Thus, a ring-like space R is constructed from a group-like space G.

2° Brief Proof It can be shown that B, M, \triangle are functions by computation.

In order to show that B, M, \triangle are continuous, two familiar facts^[2] are used—the universal property of the cartesian product and the universal property of the quotient. Continuity of B follows from the decomposition.

$$G \overset{\bullet}{\times} G \overset{\bullet}{\times} G \overset{\circ}{\times} G \overset{\bullet}{\times} G \overset{\bullet}{\times} I \xrightarrow{\times} G \overset{\bullet}{\times} G \overset{\bullet}{$$

Continuity of M and \triangle follows similarly.

To show that R is a ring-like space with respect to B, M, \triangle , it is sufficient to show that $M \circ (M \times 1) \cong M \circ (1 \times M)$ rel(e,e,e). The proof is tedious.

3° Example Let Y = [a,b]. In loop space $\Omega Y = (Y,y_0)^{(a^1,a_0)}$, $\alpha: \Omega Y \times \Omega Y \to \Omega Y$ is defined by

$$a(x,y)(\sigma) = \begin{cases} x(2\sigma), & 0 \leq \sigma \leq \frac{1}{2}, \\ y(2\sigma-1), & \frac{1}{2} \leq \sigma \leq 1, \end{cases}$$

then α is continuous^[2]. Let $G = \Omega Y$, by 1°, $R = G^{\infty} \times G^{\infty} / \sim$ is a ring-like space.

By Urysohn lemma^[3], it is desirable to choose $x,y,u,v,s,t \in G = \Omega([a,b])$ such that $M \circ (M \times 1) \neq M \circ (1 \times M)$, so R is not a topological ring.

References

- [1] 刘亚星,论环式空间 (I) (ON Ring-Like Spaces (I)),数学进展,3卷3期(1957),p.404.
- [2] Switzer, R. M., Algebraic Topology-Homotopy and Homology, Berlin-Heidelberg-New York (1975), P. 1, PP. 16~18.
- [3] Singer, I.M. and Thorpe, J.A., Lecture Notes on Elementary Topology and Geometry, New York-Heidelberg-Berlin (1967), PP, 31~32,