The Improvement in Chomsky-Schützenberger Theorem and Its

Form in "Deterministic" Case*

Li Lian (李 廉)

(The department of Math. and Mech. Lanzhou University)

In several papers such as [1], [2], [4], [8], the representation problems of formal languages were discussed. It is well-known, Chomsky-Schützenberger theorem plays an important role in the representation of context-free languages which is one of the most interesting classes of languages. The Chomsky-Schützenberger theorem asserts that given a Σ_1 , there exist Σ_2 , a Dyck set $D_{\Sigma_1} \subseteq \hat{\Sigma}_2^*$ and a homomorphism h from $\hat{\Sigma}_2^*$ onto Σ_1^* which satisfy the property that for each context-free language $L \subseteq \Sigma_1^*$ a regular set $R \subseteq \hat{\Sigma}_2^*$ can be found such that $h(D_{\Sigma_1} \cap R) = L$.

In present paper, we establish a normal-form of pushdown automata, abbreviated pda, and improve the Chomsky-Schützenberger theorem. From this improved theorem it follows that the context-free languages form a principal AFL without use of AFA^[2]. We give a variant of this improved theorem in "deterministic" case. As a co-product we obtain a necessary condition for a deterministic context-free language can be accepted in real-time by a deterministic pushdown automaton, abbreviated dpda, with empty store, this result implies that it is not all of LR(k) grammars can be parsed in real-time.

1. Preliminary

Definition 1 A language L on Σ is called a root language if there exists a set B such that $L = B^*$ and the B is called a root of $L^{[3],[4],[5]}$. A root language L on Σ is called bi-simple-root language, abbreviated BSR language, if the smallest root of L is both prefix and suffix set.

Definition 2 Let Σ_1 , Σ_2 be alphabets, $L \subseteq \Sigma_1^*$, a homomorphism $h: \Sigma_1^* \to \Sigma_2^*$ is called k-limited for L, where k is a nonnegative integer, if for any $xuy \in L$ and $h(u) = \varepsilon$ follows $|u| \le k$. If L is understood, we call that h is k-limited or limited.

^{*}Received Sept. 29, 1981

Definition 3 Let Σ_1 , Σ_2 be alphabets, $L \subseteq \Sigma_1^*$, a homomorphism $h_1 \Sigma_1^* \to \Sigma_2^*$ is called essential injective for L, if x, $y \in L$ and f(x) = f(y) follows x = y. If L is understood, we call that h is essential injective.

Let Σ be a alphabet, denote $\overline{\Sigma} = \{\overline{a} \mid a \in \Sigma\}$, and $\widehat{\Sigma} = \Sigma \cup \overline{\Sigma}$. For a pda, we denote by N(M) the language accepted by M with empty store and by T(M) the language accepted by M with final states.

Theorem 1 (Normal-form of pda.) For any pda, which does not accept ε , there exist pda's M' and M'' with no ε -move satisfying

(*) if $(p, a) \in \delta(q, a, A)$, then a = BA or a = A or $a = \varepsilon$,

where $B \in \Gamma$, such that L(M) = N(M') = T(M'').

Remark 1 From Theorem 1, it is easy to see that for any (real-time) dpda there exists a (real-time) dpda M' satisfying (*) such that N(M) = N(M') (T(M) = T(M')).

2. The improvement in the Chomsky-Schützenberger theorem

Lemma 1 For any context-free language L on Σ , there exists a grammar $G = (V_N, \Sigma, P, S_n)$ satisfying

- (i) Every production is of the form $S \rightarrow \varepsilon$ or $A \rightarrow a$ or $A \rightarrow aB$ or $A \rightarrow aBC$, where $a \in \Sigma$ and A, B $C \in V_N$;
 - (ii) S never occur in the right of any production, such that L(G) = L.

Lemma 1 was stated in [6], but we may provide a new proof, although we omit it herf.

Theorem 2 (Improvement in Chomsky-Schützenberger theorem) For any given alphabet Σ_1 , there exist Σ_2 , a Dyck set $D_{\Sigma_2} \subseteq \hat{\Sigma}_2^*$, a word $w \in \hat{\Sigma}_2^*$ and a homomorphism h from $\hat{\Sigma}_2^*$ onto Σ_1^* which satisfy the property that for each context-free language $L \subseteq \Sigma_1^*$, a regular BSR language $L_R \subseteq \hat{\Sigma}_2^*$ can be found such that $L = h(D_{\Sigma_1} \cap wL_R)$, and h is limited for $D_{\Sigma_1} \cap wL_R$.

The outline of proof Let Σ_1 be a given alphabet, let $\Sigma_2 = \Sigma_1 \cup \{c, d\}$, c, $d \notin \Sigma_1$ and $h: \hat{\Sigma}_2^* \to \Sigma_1^*$ be a homomorphism defined as follows: $h(a) = \varepsilon$, $\forall a \in \overline{\Sigma}_2 \cup \{c, d\}$, and h(a) = a, $\forall a \in \Sigma_1$. From Lemma 1, for any context-free language $L \subseteq \Sigma_1^*$, there exists a grammar G satisfying the conditions in Lemma 1 such that L = L(G). Let

$$G = (\{X_1, X_2, \dots, X_n\}, \Sigma, P, X_1) \quad P = \{\pi_1, \pi_2, \dots, \pi_m\}.$$

Define a homomorphism g: $P^* \rightarrow \hat{\Sigma}_2^*$ as follows

- (i) if $\pi_i = X_i \rightarrow aX_{i_1} X_{i_2}$, then $g(\pi_i) = a \ a \ c \ d^i \ c \ cd^{i_1} c \ cd^{i_2}$;
- (ii) if $\pi_i = X_i \rightarrow aX_{ii}$, then $g(\pi_i) = a \ \overline{a} \ \overline{c} \ \overline{c} \ \overline{d^i} \ \overline{c} \ cd^{ii}c$;
- (iii) if $\pi_i = X_i \rightarrow a$, when $a \neq \varepsilon$, $g(\pi_i) = a a c^2 \overline{c^2} c d^i c$, when $a = \varepsilon$, $g(\pi_i) = c^3 \overline{c^3}$ $\overline{c} d^i c$. Then $T = \{g(\pi_1), \dots, g(\pi_m)\} = g(P)$ is both prefix and suffix set, so $g(P^*) = g(P)^* = T^*$ is a BSR language. Let $w = cdc \in \widehat{\Sigma}_2^*$. It can be proved that

$$X_1 \xrightarrow{\pi_{i_1} \cdots \pi_{i_s} *} uX_{i_1} \cdots X_{i_q}, \ u \in \Sigma^* \text{ iff}$$

- (i) $wg(\pi_{i_1} \cdots \pi_{i_r}) > *cd^{i_q}c \cdots cd^{i_r}c$ and
- (ii) $h \circ g(\pi_{i_1} \cdots \pi_{i_t}) = u$.

From this fact it follows that $L = h(D_z, \cap wL_R)$ and h is limited for L, where $L_R = T^*$.

From Theorem 2, we obtain

Corollary 1 AFL \mathcal{L}_2 is principal, where \mathcal{L}_2 is the class of context-free languages.

3. The deterministic form of Theorem 2

Let \mathcal{L}'_2 be the class of deterministic context-free languages, denote $\mathcal{N} = \{L \mid L \text{ can be accepted by dpda with empty store}\}$

$$\mathcal{J} = \mathcal{L}_{\frac{1}{2}} - \mathcal{N}.$$

we know $\mathcal{J} \neq \phi^{[7]}$.

Lemma 2^[11] Let $L \subseteq \Sigma^*$, L is a deterministic context-free language iff $L \cdot \{ \mathcal{S} \}$ $\in \mathcal{N}$, where $\mathcal{S} \in \Sigma$.

Now we denote

 $\mathcal{N}_0 = \{L \mid L \text{ can be accepted by a real-time dpda with empty store}\}$ $\mathcal{N}_1 = \{L \mid L \in \mathcal{N} - \mathcal{N}_0 \text{ and } \epsilon \in L\}$

Theorem 3 $\mathcal{N}_{i} \neq \phi$.

The outline of proof For any $L\subseteq \Sigma^*$, we establish a right-congerence \sim_L on Σ^* as follows: $x\sim_L y$ iff $\forall z\in \Sigma^*$ ($xz\in L \Leftrightarrow yz\in L$). Then we can prove that if $\mathcal{N}_1=\phi$, then for any language in \mathcal{L}_2' , the relation \sim_L has finite inner-index, it is contrary to that the language $L_0=\{a^ib^j|i\neq j\}$ is in \mathcal{L}_2' and the inner-index of \sim_L is infinite.

Remark 2 Theorem 3 has its actual interesting. It is well-known, those grammars such as LR(k), SLR(k) etc., their parsing programming can be essentially realized by a dpda with empty store [9] [13] [14]. Naturally, we expect that all of the programming can be realized by a real-time dpda with empty store. Theorem 3 shows

E

that, this is impossible. The necessary condition do that is the inner-index of \sim_L finite.

Theorem 4 (The form of Theorem 2 in "deterministic" case): For any alphabet Σ_1 , there exists a alphabet Σ_2 , a word $w \in \hat{\Sigma}_2^*$, a Dyck set $D_{\Sigma_1} \subseteq \hat{\Sigma}_2^*$ and a homomorphism h from $\hat{\Sigma}_2^*$ onto Σ_1^* which satisfy the property that for any deterministic context-free L on Σ_1 , a regular BSR language $L_R \subseteq \hat{\Sigma}_2^*$ can be found such that L = h ($D_{\Sigma_1} \cap wL_R$), and h is essential injective for $D_{\Sigma_1} \cap wL_R$.

The outline of proof From Lemma 2 and remark 1, it is easy to construct a grammar G such that for any $w \in L$, there is unique left-most derivation to generate w. By use of the similar method in Theorem 2, we may find the L_R such that $L = h(D_{I_1} \cap wL_R)$. Then by the uniqueness of the left-most derivation it follows that h is essential injective.

Remark 3 From Theorem 3, we know that h is not necessary to be limited.

The author would like to thank Guo Yu-qi for his critical reading of the manuscript and many valuable suggestions.

References

- [1] Book, R. V., Simple representations of certain classes of languages, J. ACM, 25: 1 1978.
- [2] Ginsburg, S. and Greibach, S., Principal AFL, J. CSS, 4, 1970.
- [3] Brzozowski, A., Roots of star events, J. ACM, 74: 3, 1967.
- [4] 郭聿琦,正则语言关于正则P-(S-)语言的一种分解, 兰大学报, 2, 1980,
- [5] 郭聿琦,李廉,自由有根语言,左(右)单有根语言以及前者关于后者的自由积分解,数学学报待发表。
- [6] Salomaa, A., Formal Languages, Academic Press, New York/London, 1973.
- [7] Hopcroft, J. E. and Ullman, J. D., Formal languages and their relation to automata, Addison-Wesley, Mass. 1969.
- [8] Schützenberger, M. P., On context—free languages and pushdown automata, Inf. and Contr., 6: 3, 1963.
- [9] Knuth, D. E., On the translation of languages from left to right, Inf. and Contr. 8: 6, 1965.
- [10] Kasai, T., A universal context-free grammar, Inf. and Contr., 28: 1, 1975.
- [11] Harrison, M. A. and Havel, I. M., Strict deterministic grammars, J. CSS, 7: 3, 1973.
- [12] Oyamaguchi, M. Inagaki, Y. and Honda, N., A real-time strictness test for deterministic pushdown automata, Inf. and Contr., 47: 1, 1980.
- [13] 陈有琪, BCLR (k) 文法及其分析算法, 计算机学报。3: 3, 1980。
- [14] Deremer, F., Simple LR(k) grammars, CACM, 14: 7, 1971.