7

Self-duality of Multiple Objective Mathematical Programming

Lin Cuoyun (林锉云)

(Jiangxi University)

1. Introduction

In this paper, we discuss the self-duality of multiple objective mathematical programming. The main purpose is to extend the self-duality of single objective mathematical programming given by papers [1] and [2] to the case of multiple objective, to establish the self-duality of multiple objective linear and quadratic programming. for efficient solution, weak efficient solution and properly efficient solution.

2. Self-duality of multiple objective linear programming.

The single objective linear programming in paper [1] may be extended as following multiple objective linear programming:

$$(VLP) \begin{cases} \min Bx \\ Ax \ge -B^T \lambda \\ x \ge 0 \end{cases}$$

where A and B are n-order square matrices, A is skew-symmetric, x and λ are n--dimensional column vectors, T denote transport, $\lambda \in \Lambda^+$ or Λ^{++} , there $\Lambda^+ = \{\lambda \mid \lambda_i \ge 0$,

$$\sum_{i=1}^{n} \lambda_{i} = 1 \}, \quad \Lambda^{++} = \{ \lambda \mid \lambda_{i} > 0, \sum_{i=1}^{n} \lambda_{i} = 1 \}.$$

Let $(VLP)(\bar{\lambda})$ denote such (VLP) when given $\lambda = \bar{\lambda}$ in (VLP).

We can prove following results:

Theorem 1 (VLP) is self-dual for its efficient solutions or weak efficient: solutions or properly efficient solutions.

Theorem 2 Let $\bar{\lambda} \in \Lambda^+$ (or Λ^{++}), if $(VLP)(\bar{\lambda})$ have finite feasible solutions. then (VLP) (1) certainly have weak efficient solutions (or properly efficient solutions). Further, for an arbitrary weak efficient solution (or properly efficient solution) of (VLP) $(\bar{\lambda})$, we have $\bar{\lambda}^T (B\bar{x}) = 0$.

1

^{*}Received Aug. 18, 1981.

Corollary 1 Let $\bar{\lambda} \in \Lambda^+$, and define $I(\bar{\lambda}) = \{i | \bar{\lambda}_i > 0, 1 \le i \le n\}$. If for $\forall i \in I(\bar{\lambda})$ the row vectors $b_i \ge 0$ in B, then for arbitrary weak efficient solution \bar{x} of (VLP) $(\bar{\lambda})$, we have $b_i \bar{x} = 0$ for $i \in I(\bar{\lambda})$.

Corollary 2 Under the assumptions of corollary 1, if there exists at least one $i_0 \in I(\bar{\lambda})$ such that $b_{i_0} > 0$, then all weak efficient solutions of (VLP)($\bar{\lambda}$) are zero solution.

If all $b_i x (i = 1, 2, \dots, n)$ are monotone strictly, then theorem 2, corollary 1 and 2 are also true for efficient solutions of $(VLP)(\lambda)$.

Corollary 3 Let $\bar{\lambda} \in \Lambda^{++}$. If all $b_i \ge 0$ $(i = 1, 2, \dots, n)$, then for arbitrary properly efficient solution \bar{x} of $(VLP)(\bar{\lambda})$, we have $B\bar{x} = 0$.

Corollary 4 Under the assumptions of corollary 3, if there exists at least one i_0 ($1 \le i_0 \le n$) such that $b_{i_0} > 0$, then all properly efficient solutions of (VLP)($\bar{\lambda}$) are zero solution.

For the dual programming of (VLP), we can also establish those preperties which similar to theorem 2 and corollary 1-4 for (VLP) in above.

3. Self-duality of multiple objective quadratic programming

The single objective quadratic programming in paper [2] may be extended as following multiple objective quadratic programming:

$$(\text{VQP}) \left\langle \begin{array}{l} \min \ F(x) = (f_1(x), f_2(x), \dots, f_n(x))^T \\ \sum_{i=1}^n \lambda_i A_i x \ge -\sum_{i=1}^n \lambda_i p_i \\ x \ge 0, \end{array} \right.$$

where each $f_i(\mathbf{x}) = \mathbf{x}^T A \mathbf{x} + \mathbf{p}_i^T \mathbf{x}$, \mathbf{x} and each p_i are n-dimensional column vectors, $(\lambda_1, \lambda_2, \dots, \lambda_n) \in \Lambda^+$ or Λ^{++} , and each A_i are n-order square matrix. We assume each A_i are positive semi-diffinite, but the convex combination $\sum_{i=1}^{n} \lambda_i A_i$ is positive difinite.

We can prove following results:

Theorem 3 (VQP) is self-dual for its weak efficient solutions or properly efficient solutions.

Theorem 4 For $\forall \bar{\lambda} \in \Lambda^+(\text{or}\Lambda^{++})$, the $(\text{VQP})(\bar{\lambda})$ certainly have weak efficient solutions (or properly efficient solutions). Further, for an arbitrary weak efficient solution (or properly efficient solution) \bar{x} of $(\text{VQP})(\bar{\lambda})$, we have $\bar{\lambda}^T F(\bar{x}) = 0$.

Corollary 5 Let $\bar{\lambda} \in \Lambda^+$, and define $I(\bar{\lambda}) = \{i | \bar{\lambda}_i > 0, 1 \le i \le n\}$. If $p_i \ge 0$ for $\forall i \in I(\bar{\lambda})$, then for arbitrary weak efficient solution \bar{x} of $(VQP)(\bar{\lambda})$, we have $f_i(\bar{x}) = 0$ for $i \in I(\bar{\lambda})$.

Corollary 6 Under the assumptions of corollary 5, if there exists at least one $i_0 \in I(\bar{\lambda})_0$ such that A_{i_0} is positive definite, then all weak efficient solutions of $(VQP)(\bar{\lambda})$ are zero solution.

If we take assumptions in addition that all A_i are positive definite, then the theorem 3 and 4, corollary 5 and 6 are also true for efficient solutions of $(VQP)(\lambda)$.

Corollary 7 Let $\bar{\lambda} \in \Lambda^{++}$. If all $p_i \ge 0$ $(i = 1, 2, \dots, n)$, then for arbitrary properly efficient solution \bar{x} of $(VQP)(\bar{\lambda})$, we have $F(\bar{x}) = 0$.

Corollary 8 Under the assumptions of corollary 7, if there exists at least one i_0 $(1 \le i_0 \le n)$ such that A_{i_0} is positive definite, then all properly efficient solutions of $(V \cup P)(\bar{\lambda})$ are zero solution.

For the dual programming of (VQP), we can also establish properties similar to theorem 4 and corollary 5-8.

References

- [1] Duffin, R. J., Infinite programs, Linear inequalties and related systems, Princeton University Press, 1956.
- [2] Dorn,, W. S. Self-dual quadratic programs, J. Soc. Indust. Appl. Math., 9, 1, 51-54, 1961.