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Abstract

The aim of this paper is to present a survey of results concerning the Whittaker-
Kotel’ nikov-Raabe-Shannon-Someya sampling theorem and its various extensions
obtained at Aachen since 1977. This theorem, basic in communication engineering,
is often called the cardinal interpolation series theorem in mathematical circles.
The interconnections of the sampling theorem (in the setting of Paley-Wiener
space) with the theory of Fourier series and integrals are examined. Emphasis is
placed upon etrror analysis, including the aliasing, round-off (or quantization),
and time jitter errors. Some new error estimates are given, others ate improved:
many of the proofs are reduced to a common structure. Both deterministic and
probabilistic methods are employed. whereas these results are worked out in detail,

the paper also contains a brief discussion of some of the various generalizations.
1. Introduction and History

The well-known Shannon (1940/49)[58] sampling theorem which plays a basic
role in communication, control theory and data processing, states that every real-
valued signal function f(¢) that is bandlimited to [ -zW,7W1, W>0, can be
completely reconstructed from its values (samples f(k(W)) taken at the nodes
k/w equally spaced apart on the real axis R, in terms of
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( i being understood as lim zm]’, usually with m=n), The latter form of this se-
rihe-s_:ecalls to mind that ;'tmlzz(i’a-t;;en considered much earlier by the mathematicians
C. de La Vallée Poussin (1908)[76]1, E. T. Whittaker (1915)[81]1, W. L. Fertar
(1925)[327 and J. M. Whittaker (1929/35)[80,81]; the sampling series was called
Whittaker’s cardinal (interpolation) series by them, or cardinal function provided
this series converges.

Returning to the engineering literature, V. A. Kotel’nikov (1933)[41] and H,
Raabe (1939)[51] had considered the theorem earlier than, and I. Someya (1949)
[60] parallel to C. Shannon. In any case, between 1950 and 1975 at least 250 arti-
cles dealing with various aspects of the sampling theorem, written by about 170
different authors, appeared in engineering journals (see the survey paper by A. J,
Jerri [40] and the historical report by H, D, Liike [45]),

But from the point of view of pure mathematics there is comparatively only a
small number of papers on the subject, e. g. by G. H, Hardy (1941)[35], L. L.
Campbell (1964)[267, J. L. Brown Jr. (1967)[7], I. J. Schoenberg (since 1969),
cf. [55,561, R.Kress (1970)[43,44], J. McNamee-F, Stenger-E, L, Wnitney (1971)
[48]1, R. P, Boas (1972)[5], H. Pollard-O. Shisha (1972)[50], Boas-Pollard (1974)
{61, L. B. Sofman (1974)[591,V. L. Buslaev-A. G, Vituskin (1974)[11], Vitugkin
(1976)[77], Stenger (1976)[72]1,[461, J. R. Higgins (1976)[361, R. Gervais-Q. 1,
Rahman-G. Schmeisser (1978)(33,34], wio followed up the work of the four pio-
neering mathematicians mentioned. Although the material should be a standard topic
in books on Fouriet analysis, just the books by Boas (1954)[4], H. Schonhage
(1971)[57], H, Dym-H, P, McKean (1972){28], J. R, Higgins (1977)[37], H,
Triebel (1977)[75] and R, M. Young (1980)[83] seem to cover the sampling
theorem.

The aim of this paper® is to try to draw the sampling theorem to the attention
of a wider group of mathematicians, for it indeed belongs to the interdisciplinary
domain of Fourier analysis, interpolation, approximation and communication engi-
neering, For this purpose I will mainly report on a few of the developments in
connection with this theorem at Aachen since 1977. These were carried out chiefly
by Dr. W. Splettstosser, but also by Drs. R, L. Stens, G. Wilmes, W. Engels and
the present author. At the same time most of the results are presented in a sharpen~
ed form, from a fresh point of view, or with new proofs. As a matter of fact, all
but one of the proofs have been reduced to a common structure. Theorems 7 and 9b)

seem to be new.

«) This paper is a modified and an enlarged version of Butzer [13] with new material and re-

ferences.
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Let me first look at the hypotheses of the theorem. It is generally assumed that
‘f belongs to C(R) (=class of functions which are uniformly continuous and boun-
ded on the real axis R) and to I (R) (=class of fuactions which are absolutely
integrable over R in Lebesgue’s sense). That f(t) is bandlimited to [ —aW,7W1,
some W>>0, means that the Fourier transform of f€ L (R), namely fA(®@):=(1/y/2x)
--lg fwyei**du, »€R, vanishes for all |o|>aW, In that case the Fourier inversion

theorem gives
=W

(1.2) 1) =5 [ 1rwenn, (tER).

-xW

“The sampling theorem may now be stated more precisely.

Theorem 1 If f€C(R)NL(R), and f is bandlitmied to [ ~-xW ,nW], then the
representation (1.1) holds for each t& R, the series being absolutely and uniformly
convergent on R,

If fec(R)NL(R), then fEL2(R) (=class of functions quadratically inte-
grable over R), In this regard, the Paley-Wiener theorem states that any & L*(R)
has the representation (1.2) (or, more generally, f(t)=(1// 27 )[2%, g(v)ei' dv
with g€ L*[ - aw ,zWw7]) iff f is the restriction to R of an entire function F of
exponential type aw, i; es,

|F(2) | <&V F|c (z=x+1iy€0),

where {[F(e)|

c'=||F|jct=sup [F(t)|, The class of such functions f in L*(R) will
teR

be denoted by B,s»; see R; M; Young [83, Chap. 2], So the hypothesis of Theorem
1 may be replaced by f€B,y,

Concerning the series (1,1) itself, namely the cardinal function, it is of in-
terest that it interpolates f at the nodes t=k/W, k& Z, just because

Si{m(Wt=k) pi=nx (Wi - k) ={1’ t=k/w

T(Wt-k) 0, t=1/W,kx1€z,

This leads to a “formal” proof of (1,1); if it would be known that the sum in
the first series of (1.1), regarded as a convolution sum of f and the si-function,
be commutative; then it would be equal to

3 (- ) e = s, (ER)

h=m—co

2. Sampling Expansions of Non-Bandlimited Functions

Practice demands that one also tries to consider representations of type (1.1)
for duration-limited functions, i. e., for functions f& C(R) such that f(t) =0 for
all |t}>T, some T>0, Since such functions cannot be simultaneously bandlimited
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(unless they vanish everywhere), in view of the Paley-Wiener theorem and the
identity theorem for holomorphic functions, one needs to extend the sampling theorem
to not necessarily bandlimited functions, Note that those functions f€ L(R) that
are either bandlimited or duration-limited form a dense subspace of L(R),

This leads to the following theorem, considered by Brown [7], Boas [5], and
Butzer-Splettstosser [19],

Theorem 2, If fcC(R)NL(R) and A€ L(R), then, uniformly in tER,

qi N\ Lk sinT(Wt-k)
(Zol) f(t) —#EE“Z f(W, x(wt_k) .

It states that f(t) can be rteconstructed from its sampling sum provided one
takes its limit as W-»oco, Here the distance between the nodes k/W is not fixed
as in Theorem 1 but decreases for W-»oo, so that the number of nodes increases.
Thus the series in (2,1) approximates and simultaneously interpolates f(¢) at
t=k/W for each fixed w.

Let me prove Theorems 1 and 2 by means of a slight modification of the proof
of Boas [5], using results which directly precede the basic Poisson summation
formula (cf. [18, pp. 123 f, 201ff; ]), Let f, fA€ L(R), These state that if

(2.2) F*(0)i=y/W D fA(2kaw - v),

ke=—o

then this series is dominatedly convergent on every compact interval, and so

F*CLyyws [F*18(k) =[f*18(~k/W) = f(k/W) (kER),
where [g1a(k):=(1/\/ 2aW )[*%,8(u) exp(—iku/w)du, k€ R, denote the Fourier co-
efficients of g€ L, ( =class of functions which are 27xW-periodic and Lebesgue
integrable over (-aW,7W)), So one has the Fourier expansion

1 - LAY
(2.3 F*(v)~ _\727’zw,,§,.f(w>e kerw weR),

Since a Fourier series can be multiplied by e~i**, a function of bounded variation,
and integrated term by term (see [85, p; 160]), and

1
2w

rW e e Wy = si{m (Wt -k)} (kER),

—‘W
it follows that (2.3) yields for each t&R,

1 W % _.Wd had (k) . -
IS i = = )si{n(wt—-k)}=:S(t).
e L (v)e "' dv kgmf w7 )si{m(Wi—k)}=:5(t)
Replacing the function F* in the integral on the left by the series (2.2), inter-
changing integral and sum (possible by the dominated convergence), and substi

tuting 2kxw-v by v, then
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1 o Qe+D W
S(t) = —=—— Z e izhTwe I fA(w)edo,
7
viam @e-DaW
on the other band, one has
1 o QE+DEW

T : 1 i
\/—z—fif"(v)e'“dv= VTZ J fr(v)e*do,

k=== os-0xWw

()=

Thin gives for each t€R

QAL
1 i , iv
2.4) LRy () |:=]F(t) ~S(t) ] = ¥l ( Z (1 —e-i2amWt y J' f*(v)e'”'dv
h=—o e&-DxW
2 Qe+D)x W 2
<HrX | e [,
Gh-DxW lvi>sw

Now, if f* vanishes outside [ —zW,7zW1, then (R, f)(t) =0 for all tcR, proving.
Theorem 1, In general if f*CL(R), then lim (Ryf)(f)=0 uniformly in tER,.
establishing Theorem 2, v

The above estimate is, as Brown [7] shows, the best result of its kind, There
exist different proofs of the sampling theorem: there are those based upon Fourier
series expansions, see Brown (7], Butzer-Splettstosser [19,20], upon Parseval’s-
formula, see Brown [8], Stens [74], upon function theory methods (residue for-
mula), see e, g. G, Wunsch [82], upon the Euler-MacLaurin summation formula,
see Butzer-Stens [24],

It is possible to weaken the hypotheses of Theorem 2 slightly,

Theorem 2* If f(t)=(1// 2n )[gzg(v)ei**dv, tcR, with g&€L(R), then(2.1)
holds uniformly in tER,

Indeed, if f, fA€L(R), then g(v) =f*(v), vER,

3. Sampling Theorem for Duration-Limited Functions;
Comparison with Classical Results

If a function f is to be determined by its sampled values f(k/wW), k&'Z in-
case it is duration-limited, 2N + 1 such values must be evaluated; here N=N(T,W) -
:=[TW] is the largest integer equal to or less than Tw. Indeed,

Theorem 3 Let fcC(R) such that f(t)=0 for all [t|>T and f*E€L(R),
Then, uniformly in tCR,

S L ksina(WE-k)
(3.1 f<t>—};j§2_:j(w) r(Wt-k)

The result follows from Theorem 2 by noting that f(4k/W) vanishes for |k|
>N, but does not for |k|<N, ‘

.Let us reformulate Theorem 3 so that it is comparable with well-known results
on interpolation., Setting C,,(R):={fE€C(R); f(t)=0 for t&{0,2x]}, an applica-
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tion of Theorem 2 with W= (2n+1)/2x gives, together with

. 2n+1) 27
2n sin———>(t—-——k
3.2) (1)@=t 1T . 2(,, 7+1) mEN)
k=0 t—~——=k
(- me1¥)

Corollary 1 Let f€(C, (R) such that f*&L(R), Then, uniformly in t€R,
{3.3) f(t) = im(T,f) (@),

The operators T,:C,,(R)—>C(R), defined by (3.2), are bounded for each fixed
n& N but not uniformly so since the operator norms divergent. Indeed (cf. [731),
zn Sin 2n2+1(t_ 21121,[1 k)
T wllicasamr.cmn =§1611R3 on+ 1 ; (t— o% k) =logn,
on+1

The fact that (T,f)(t) converges uniformly to f(z) fot n—oo is no contradiction
to the Banach-Steinhaus theorem since in addition to fE€¢C, (R) it is assumed that
f*E€L(R), Note that T, is not a polynomial operator, nor does it define a periodic
function, v

In comparison, let me recall the trigonometric Lagrange interpolating polyno-
mial of fE€(C,,(=class of functions which are continuous and 27m-periodic on R) at
the equidistant nodes t =(2x/(2n+ 1))k, 0<<k<2n, nE€P(cf. A, Zygmund [85, II,
p. 4 ££1), It can be written as

. on+1 2z
2 1 gr ST (1- 52k
(L) (1) = k e
H®) 2n+1,§f(2n+1) 2siné—(t‘—2_%fq1k) |

This polynomial interpolates f at t=t,:(L,f)(t,) =f(t,), Moreover, (L,p,) () =p,(t)
for any trigonometric polynomial p,€P,(=class of all p, of degree<n), For each
fixed n€N L, is a bounded, linear operator mapping C,, onto P, which is idempo
tent, So on account of the Harsiladze-Losinsii theorem (cf, [277), it cannot be ex

pected that (L,f)(?) converges uniformly to f(t) for every fE€(C,, unless f satisfies
in addition some smoothness condition (such as (4,9); cf. [57, § 5.43), For L,
one has [|L,|ice pa=l08 1,

4, Error Estimates for Non-bandlimited Functions

Our next question is the rate of convergence in Theorem 2, in other words, how
good is the approximation of f(t) by the sum in (2.1), namely (R, f)(t) of (2.3)
—often called the aliasing error-—, independence upon smoothness conditions on f.
These are primarily given in terms of Lipschitz classes. Such a cldss of order a,
0<a<l1, is defined by
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(4.1) Lip,(a; O):={f €C(R); ,Shlllgalif(-+h>—f(->llc<L6“, a>0},
Secondly, f is assumed to have a given rate of decay at infinity, f(t) =0(|t|-?) for
|t]|>t,, some 0<<Y=<C1, Since this assumption is trivial for t<(t, if f€(R), it is
equivalent to ‘
(4.2) [FCt) | <My|t]~! (t3:0)
for some (0<<¥<1, Note that if f€(C,,(R), then fEL(R) and |f()|<]|fllc2n/]t]
for t20, i, e., (4.2) is satisfied with y=1,

For our theorem in this regard, due basically to Splettstosser [62] and Stens
[74], two lemmas, contained implicitly in [70], will be needed,

Lemma 1 One has for g>1, 1/p+1/9=1, W>0,

kgwlsi{:z(vvt-m}]%n(%)q qfl

<p.

Lemma 2, Assume that condition (4.2) is satisfied for some y€(0,1], For
each p>=2/v, W>0, V>0,

(3 1w 1) "<mf 3

l&i>V l&1>V

Theorem 4 ILet fCC(RYNI(R) satisfy (4.2) for some o<y<<1, If f°¢€
Lip;(a;C) for 0<a<1, rEP, then

=YP\ VP

k
<2 I/PMfW?V(l —PV)/P'

w

4.3) [ RehH D lle=lf) = Z f %%)Si {w(We-k) Hlc<M,(f,r,a,)W"""logWw

Prept
provided Wz=exp{2/(r+a+7v)}, Wwith constant M, given in (4.7),

Concerning the proof, first consider the de La Vallée Poussin means, defined
for feCc(R), t€R, p>0 by
(4.4) Woab) (0yi= | 1t -wysi{ G oulsifoulau,
They belong to C(R)NL(R), they are known (cf, [70]) to satisfy the property
(4.2) with M4:=3(M;+|fllc) for some 0<<¥<<1 and p=>1 provided f does, If f° €
Lip;(a;C), then|lf(e) ~ (VD) () |lc<7L;"-° for p>1, Moreover, they are bandlimi-
ted to [ - 2p,20], By Theorem 1 this implies that

(4.5) oW =3 voh (7% )sitrwi-k))

famrary

for p=aW /2 and each tER, Hence

R ® =1 = VD O+ T {wnn(i) - () stz we-m1=10 + Lo,

e —co

Since {|I,(»)|lc<C;W~""* for W>1, where C;:=7L(2/x)"*°, to complete the proof it
suffices to show that [[I,(«)|c=0((log W)/W™*°), Indeed, Holder’s inequality
yields
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P)l/l‘
Split up the second sum into those k € Z with |k|<V, denoting it by I}, and into

those with |k|>V, denoting it by J%, whete v is to be chosen suitably, Then
<V + DY, (o) |lc+Choosing Vi=[W*¢*+*/* + 17, then V=2 for w>=1, and

vp
(2V + 1) lll’g(_zs__) zl/Pexp{:[l) ( r +a +7v )log W} l/l’e

provided p:=((r +a +7v) /¥)logWw, Then Ji<5Y%e c,Ww """, Furthermore, since f satis-
fies (4,2), Lemma 2 gives

n<e( X

lkI>V

(4.6) 112(t>1<( 2 |si{z(Wt-k )}1«) (Z l(vpp,e)(_v’%)_f(h

k= -o0 k- —c0

—op\ /P
! <C,2VPWIVYPY T <, 0 Pp ey T~
I

k
w
with c,;=4M; + 3||fllc, provided py=2, The latter condition is equivalent to log W
=2/(r+a+7y) or W=exp (2/(r+a+7V)),

Since the first sum in (4,6) is bounded by p!?<pP by Lemma 1, a combination
of all estimates delivers

r+a+Y

logw
W'*“ Ty

4.7 MR le<~5mra ){5”280 +2%c,e} W

r+a+
<(~f%-l)—{ Ye, +25™%ec, + 2" ec, }—ra

logw
W
provided W=exp(2/(r+a+7)), This proves the theorem,

Note that the concrete estimate in (4.7) of M, delivered by the above proof is
the sharpest known so far, The hypothesis f € L(R) was used in the proof only to
establish the validity of (4,5), But (4.5) is known to hold provided f €¢C(R) sa-
tisfies (4.2) (see [701),

Theorem 3 or Corollary 1 may also be supplied with rates, Indeed, Theorem 4
yields ‘ '

Corollary 2 If f&€C,,(R) and f¢” €Lip(a;C) for 0<e<l, rEP, then

n+l 2%

n sin-=———= (e« k)
2 S 2 n+1 - logn
Hf() 2n+12f(2n+1 27, ic <n+) (n->co).
C=Zne1™

A weaker form of this corollary, namely under the additional hypothesis that
the transform f4 belbngs to L(R), and the weaker order O(n="-*-!), was established
earlier by Butzer-Splettstosser [19],[20], Moreover, Corollaty 2 also holds for
r=0, thus for functions which need not be differentiable at all, The estimate in
Corollaty 2 may also be stated in terms of the rth modulus of continuity;s see

© 1995-2005 Tsinghua Tongfang Optical Disc Co., Ltd. All rights reserved.
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Butzer [12] where the proof follows as an application of the Banach-Steinhaus
theorem with rates,

As an example, consider the function (see [70]),

Jc(t)._{sint, for tE€[0,27]
o , for t otherwise,

Noting that f €Lip(1;C), an application of Corollary 2 yields for n—»>oco

s 2n+1 2%
feo) = 2 isin( 27 k) sin=——=C =57 =0( logn)
n+1 & 2n+1 (o =—2% 15 c n J°
2n+1

If one would instead take the function

1-cost, t€[0,27]

t
t): = du=
8(H) Lf(u) “ { 0, t otherwise,

then the error would be of order O((log n/n?),
It is of interest to compare the assertions of Corollaries 1 and 2 with the cor-
respondin~ ones in the case of the partial sums of the Fourier series of fE(,,,

defined by
1 (e sin 2n2+1(t—u)
“.8 (s = 2 du (teR).
° sin?(t—u)

In this regard, if f& C,, satisfies the Dini-Lipschitz condition, i, e

(4.9) O (f3 Cyp)i= ,shlllgcllf(- +h) = f()lle,.=0(]1/logs|) (60 +),

then it is known that (cf. [18, p. 105]) lim (S,f)(¢) =f(¢) uniformly in tER,
Wheteas Corollary 1 is a rough counterpart to this result, an “exact” one also holds,

Indeed, R, Stens [73] improved Corollary 1 (actually the proof of Corollary 2) to
the effect that fE€ C,,(R) together with

|fI|1<paHf(. +h) = f()llc=0(]1/logs|) (6—>0+)

implies the validity of (3.3),
The exact counterpart of Corollary 2 for Fourier series, actually its model, sta-

tes that for any f€C,, satisfying o(f";C,,) =0(6*), 60+, for 0<e<l, reP,
one has

(4.10) IF (o) - (snf>(->llc.,='o(—l9ﬂ) , (n—>o0),

r4a
n+

One could also compare Theorem 4 with the corresponding one for Fourier inte-
grals, In this respect, Splettstésser [66] has just shown that

© 1995-2005 Tsinghua Tongfang Optical Disc Co., Ltd. All rights reserved.
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sinaw (s —u logw

)
Wy~ Wle=0(5gme),

(4.11) IF¢e) - ijﬂu) -

for Ww—>oo provided f&Cc(R) satisfies (4.2) for 0<y=<<1 and f">€ Lip(a; ¢), Note
that one may regard the infinite sum in (4.3) as a discrete form of the convolution
integral in (4,11), If fEL(R) is bandlimited to [-aW,7Ww], then Parseval’s
formula states in this regard that

sinTw (t -n)
oW (E—w) Ok

1 4 A ivt —
1= e =w jw

So (4.11) may be considered as a continucus counterpart of the (discrete) Theorem 4,
both being valid for not necessarily bandlimited functions,

5. A Comparison of Fourier Analysis on the Spaces L*(-aW,7W),
L*(R) with that on the Paley-Wiener Space B, .

5.1 The Sampling Series as an Orthogonal Expansion in the Hilbert Space B,y.
The cardinal series has properties that are comparable to those of Fourier se-
ries as well as of Fourier integrals, as was noted in Sections 3 and 4, In this line
let us first consider the matter from the point of view of orthogonal series in a
Hilbert space, The sequence {@,(u)},c,, where @,(w):=(2aW)~2e'®%"  is an ortho-

gonal sequence in L*(-aWw,7w) that is also total, Indeed,

*w 1 —ivH ]- +i(j/WIH
(6.1) j-xW\/ZJFWG Ve A

— i 3 1, k=j
= Ws1{:r - ={
v m W(v W)} 0, kj,
where v=k/W; moreover [*%,fu) ¢,m)du=0 for fECL:(-aw,rw) and all kEZ
implies that f=(, Considering the space LZ(R) now, the sequence {@,,(®)};cs

given by
(zer)_l/Zei(k/W)", ‘ul<nW
b {o , Jul>aw,

lies in L*(R) with [zp; . (W)@, . (W)du=46,;, by (5.1); so it defines an orthonormal
sequence in L?(R), Now by (5.1)

1
Vo

[9,..1%(0)i=L*(R) jRe—i""(p,,,+(u)du=\/W si{:rW( ——%)} (kEZ; vER)

is also an orthonormal sequence in L*(R) since

1
2n

1
J’ et iGIWIVo itk/W) dv:di.k
-xW

J‘R[(pim]/\ @) [P+ 1 (v)dv =

by Parseval’s formula (cf, [18, p. 193D).
Since of course the sequence {@, .(¥)},c, is not total in L2(R), it is not to
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be expected that {[@, .]*(t)},ez is total in L?2(R), However, the latter sequence
is total in the subspace B, of L’(R), Indeed, these functions belong to B,, since

|09, 14D | </ We &7 (k€Zy z=1+iy),
Moreover, for gE€B,y,

[ =W
(5.3 Lg(t)[mh.m(t ydt =jRgA<v>tpk,+ <v>dv=j g (1) @, (v)dv

-

by Parseval’/s theorem, valid for f, g€ L*(R),
(5.4) [ srprenar jg (@)f (v)dv,

Now if the integral on the left side of (5,3) vanishes for all k€ Z, the totality
of @, in L*(—aW,nW) implies that g4(v) is null on [-aW,xW], so that g(t)
=1/ 37 [*¥ye’g? (v)dv=0 by (1.2) for all tER,

So it is of interest to consider the sequence {[(p,,,+]"(t)},,ez={\/v7si W(t—

k . . . . <
——)} in the class B,,. But B_, is a vector space under pointwise addition and
keZ

scalar multiplication; it is an inner product space with respect to (f,g):=[pf(t)
«g(®) dt, Since the Fourier transform is an isometry, the Paley-Wiener theorem
shows that B,y is a separable Hilbert space, isometrically isomorphic to L2(—- W,
W), G. H, Hardy [35] actually called the functions of B8,, the Paley-Wiener
functions, so that B, may be called the Paley-Wiener space,

[Note that the fact that the Fourier transform is an isometric mapping, here
of the total orthonormal sequence {¢, .},.,<L*(R) into {[®, ,]*},¢;ZB,», could
also have been used to prove that the sequence {[¢, .]1*},., is total and orthonor-
mal by a general result; see Higgins [36, p, 5511,

Since the sequence {,/Wsit(Wt—k)},., forms a total orthonormal sequence, thus
a basis in By, it is possible to apply the welldeveloped theory of (general)orthogonal
sequences in Hilbert spaces to this particular case, First of all, for any fE€ B,y

(5.5) Wiy = 3 v/ Wsi{m (Wt —k) }l 1

k —n
takes on its minimal value when the Yy, are the Fourier coefficients of f with re-
spect to the sequence {/Wsi(ZTWt—k)},cz i. e,.

v 1 k
(5.6 Vo= (£, 1002 = | 1M @& an = ()
in view of (5.4) and (1.2), This means that

(5.7) hé;ﬂf(%)si{JrW(t——k)}

gives the best approximation to f by polynomials” En P/ Wsi{m(Wt-k)} in the
k=-n
metric of B,y. '
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Moreover, the series (5.7) converges in B, to f, giving

(5.8) B ft) = Zf(%)si{Jr(Wt—k)}

bem—e

in L*(R)-norm, Furthermore, Parseval’s equation for f€ B, together with (5.6)

reads
k 2
G-
All in all, each f& B, has the unique Fourier expansion (5.8), so that thé

Fourier series of f& B, with respect to the sequence {[¢,,]%},.; actually turns
out to be the cardinal series of f.

(5.9) [ Jropa= 3.1 3

hw—c k=

Finally, the convergence in B,, implies pointwise and uniform convergence
over R, Indeed, choosing f(u):=si{w(Wt-k)} in (5.9) yields

Prepary

By Holder’s inequality this gives

> 1(E)simove-oy<[ 31

lki>n [&|>n

@I T [ simtows=r312]"
-[w > |16)

2]1/2
{kl>n

‘which tends to zero uniformly in t€R for n-»oo by (5.9), Hence the series (5.7)
tends in L*(R)-norm towards a function gc L2(R), But since the L*(R)-limit of
(5.7) is f, one has g=f, '

On the other hand, by the Riesz-Fischer theorem there exists an f¢ B, such

that (5,5) converges to zero for n-»co if and only if ﬁ]?k]2<oo, In this case ¥,

=(f,[9,+]%). Note that f is unique since the sequence {[@, ,]"},c, is total,

For this material see also [36, pp. 57f. 1,83, pp. 105ff, 1,(48] and [723.

5.2 The Special Role of the Space B,

The cardinal function has been described as “a function of royal blood in
the family of entire functions, whose distinguished properties separate it from its
bourgeois brethren” (see also [48]), The Paley-Wiener theorem reconfirmed that
the space B,, does indeed play a special role in analysis, Just as the Poisson sum-
mation formula provides a basic link between Fourier series and Fourier integrals,
which is by no means trivial in the case of not necessarily bandlimited functions,
so does the classical sampling theorem in the bandlimited case,

In this line of thought let us consider the material presented so far in retro-
spect, Let us set W =1 [or simplicity, First of all, the space B, ¢lies between”
L*(-n,n) apd L*(R), Indeed,
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L3, xL*(~m,x) ={gc L*(R);y g(t) =0, |t|>x}=B cCL*(R),.
(The fact that L*(~nx,x) is isomorphic to B, results from the Paley-Wiener the-

orem), Furthermore, the space B, has the best properties of both the spaces Lz(—Jl',l
x) and L2(R), This can be seen from the table, where the Fourier analysis on the

three spaces is set up parallel to another. Here L*(R) ~[; stands for the Fourier
transiorm for L?(R)-functions, L?(R) - X,., denotes the limit for n-—>oco of Z}..,

in L?*(R)-norm, and J* is the space of all complex sequences {§,},., with
Zhezl&P<+ oo,

Spaces

Lz(-'n,ﬂ)

B,

L*(R)

“Total, Ortho-
normal Sequ-
ence

‘Orthonormali-
ty

Fourier Trans-
forms

Inversion
Formulae

n-th Partial
Sums (Inte-
grals)

Generalized
Parseval Equa-
tions

{(2m)~Ye'}, e

1 x

o efkte-iildt
=054

1
Ak): = —=—
fetey: =

. ’f(u)e‘”"'du

(ke'd)

F8: L2 (= m,m)—>1?

TORIRIC I
- fbe s

2 keZ

1

o% _xf(u) X

sin(2n+1)(t—-u)/2
sin(t—-u)/2
x du

> radk) s (k)

kEZ
= rwa@ar
(f,8€ L*(~-=,7))

{8im(t-%) }sez

IRsi/:n:(t —k))si(x(t - j))dt

=08

fpk)= (f,8in (s = k))

=f(k) (kEZL)

f4:B,—~1*

f(t)y=L*(R)

=D isk)si(n(t~k))
keZ

J " F D, u, 1) du

D,(u,t): = Z si(m(t-

h==—n

~k))si(m(u—-k))

f5(k)gg (k)
k€

Z
=) f@)g(t)at
R

(f,8E€B,)
TABLE

© 1995-2005 Tsinghua Tongfang Optical Disc Co., Ltd. All rights reserved.

™M(V):=L*(R) -

- 12—” ij(u)e"'”“du

wER)

L (R)->L*(R)
(5.10)

f(t) = LXR) — \/127

o] prcoresan
R
(5.11)

1
v 27
1
=] s
S0 -1,
(t—w)

j_ (@) o

(5.12)

LJ‘"(MB"(T))dv

Lf (DB dt
(f,e €LY (R)),
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Note that whereas the convolution product for the spaces L?(-x,x) and L*(R)
\/12?‘[:’f(t—u)g(u)du and (1/¢'§E)IRf(t—u)g(u)du, respectively,
the convolution of f,gE€B, takes on the simple form (f+g)(t):=7(t)-g(t) for tER
provided feg€B, with the convolution theorem [f#glj(k) =f (k)ghk), KEZ,

Let us finally compare transform theory for the three spaces L*(-m,n),B, and
LX(R), more Specifically between the latter two, Indeed, if f€B,, then fACL*(-m,
x), so f* can be expanded into its (classical) Fourier series (cf, [18, p. 175])

is defined by

fr@) = LR = X (800 {—o—et}

fom—oe Vv 2®
o 1 . . 1 .
5013) =L2(R)— =—— fA(u) ~ik¢duy - pikY
( :Z:.,,(\/Zﬂ J-x ¢ ){\/275 € }+
1 <« .
=LR) - o 2 (e,

hm—oo

In other words, the restriction of the Fourier transform (5.10) for L2(R)-func-
tions to B,-functions yields the transform (5,13); it is actually a discretized form
of (5.10), On the other hand, the L?(R) inverse transform (5.11) restricted to
fE€B, turns out to be, noting (5.13),

1
V2

K fA(vyeitdv = L2(R) ~ Z FR)si{m(t-k)}

b =—o0

f(t)=

in view of (5,1). This is the Fourier series expansion of f in terms of the se-
quence {siz(t—-k)},c, in the L2(R)-metric, and can be regarded as the discretized
version of the Fourier inversion integral in the form (5.12),

6. Round-off Error in Sampling Series

When setting up the sampling sum it may happen that one does not have the
exact sample values f(k/W) at one’s disposal but only recorded or tabulated values
f(k/W), both differing by

e =f(k/W) = F(/W)

where |e,|<<e, kEZ; e, is called the local round-off error. In digital signal pro-
cessing this is the case when the sampled values are replaced by the nearest dis-
crete (quantized) values, namely by the values f(k/W) of the corresponding step
function f with possible values 2re, r &€ Z (see Figure), This is assumed below;
then (e, [<[f(k/W)], KEZ,
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8 J .
62 et

i & ,\/

b =

2¢ T -~

.

Figure Function f (drawn as— ) and its corresponding step function

Floeevense ) with values f(k/W) and f(k/W), respectively,

In this regard it is of interest to consider the total round-off (or guantization)
error

(Q.1):=(Q, wH(t):=f(t) -~ f si{m(Wt-k)} = ‘5“ e, Si{m(Wt—k)}
v .Z,, (W) T GER)

under the hypotheses of Theorem 1, Round-off errors, possibly caused by uncer-
taincies in the sample values, are generally treated using stochastic methods; see e,
g. D. S. Ruchkin [52], A. Papoulis [49] and T. Ericson [317, Our main result
here, which employs deterministic methods, states
Theorem 5 a) Let fEC(R)NL(R) with frA(w) =0 for all |v|>aw, W>0.
Then, uniformly in t€R,
lim (Q,. () =

¢ —»0+

b) In addition assume that (4.2) holds for some y € (0,17, Then

1€Q.H) () lle<M,(f,v)elog(1/e)
for le,| <esmin{1/w, e'2}, kcZ, W=>1, where M, is the constant of (6.3).

Concerning the proof of part a), Holder’s inequality gives

(6. 1) 1@n®i<( 3 sitrcwi-01) " (2 1e.17)"

kw—co h=—o
Now the first sum is bounded for g=2 by 2 according to Lemma 1, Regarding the
second sum in (6.1), since lg j<<|fk/W)]|, KEZ,

(Z1e)"<( 3 1)+

The first term on the right side has upper bound /(31/e]+ 1)e? </ 2e+et , which

l/Z

l/al<[1/ej 1&]>[1/¢ ]

tends to zero for e—»0+, The second term also tends to zero in view of the con-

vergence of the series

k~—eo} W)l j [fA(v) |*do,

© 1995-2005 Tsinghua Tongfang Optical Disc Co., Ltd. All rights reserved.
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valid in view of Parseval’s formula since fACL2(-aW,aW),
Concerning part b), the second sum in (6.1) is bounded by
(5 )" ( 2 "
Ikl<acp, &) 1kl>acp,e)
where a(p,e):= (e~ ¥V'W#@*-07]  Firstly, note that a(p,e)>=1 provided e<1/W, W
>1, and py=>=2, Then the first term in (6.2), noting that W'<{1/e for v € (0,11,
is bounded by

({20(p,e) + 1}eP) VP gl Pe g~ VITW I Y- D 3V pexp{ (4/pY) l0g(1/e) } <37 %ee

if one chooses p= (4/y) log (1/e), observing that 1/(py-1)<3/py for py>2, and
32 3"? for e<<e V?, The second term in (6.2) can then be estimated on account

of Lemma 2 by
zl/ﬁM!WV a(p’s)(l—PV)/l’gz?/sze 61/4.

Combining all the results, observing that the first sum in (6,1) is less than p, one
has

(6.3) Q.1 (1) | <3(37% + 27" My e log

uniformly in t &R, Note that py=2 as e<<e~¥*, This proves part b),

Observe that the convergence given in Theorem 5a) holds uniformly in t€R.,
That given in the corresponding Theorem 3.1 of [21] holds only for local t-intervals
(namely |t|<<[1/e]/(2W)). The proof of part b), which is quite different from
that of Theorem 3.2 of [217], gets along with less restrictive conditions upon e,
Here ¢,=0(lk| ™), |[k|[—>oo in view of (4.2),

It is also possible to examine the total round-off or quantization error in the
case of sampling approximation of non-bandlimited functions, thus in the case of
Theorem 2, In comparison with Theorem 5b) it will now be an error additional to
that caused by the non-bandlimitation, namely to that of the aliasing error of The-
orem 4,

Theorem § Under the hypotheses of Theorem 4 one has for W = (1/e) \+*,
rz=1,

1i¢ = >, ?(%)Si{ﬂ(W- — k) }le<Ms(f,r,0,7) e log(1/e)

k-—m
Jor e<exp{ - 2(r+a)/(r+a+7v)}, where M,;=M, +M,, M, and M, being the constants
in (4.7) and (6.3),

To prove it, one splits up the term within the norm as

{1 - Sy eiimave-in}+ 35(1(r) - 75y ) ssizowr=mn),
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The norm of the first term is of order O(log W/W'™*) by Theorem 4, that of the
second term of order O(e log1/e) by Theorem 5b), Taking W as postulated, the re-
sult follows,

Note that it can be shown that Theorem 6 also holds for r=( by modifying the
proof of Theorem 5b) slightly. It is not to be expected that the rate of convergence
in Theorem 6 can be any better than O(e logl/e), even if higher derivatives of f
exist. However, in this situation the sampling rate can be diminished without in-
creasing the error, Indeed, the existence of the (r +2)th continuous derivative in-
stead of just the (r+1)th allows one to multiply the distance between the samp-
ling nodes by the factor exp(-1/(r+r*)), For example, for r=1 and e=1/4 this
will be the factor 2,

The assertions of Theorems 5b) and 6 may be interpreted in terms of stability
theory with rates, a small change in the function values at all of the nodes pro-
duces a corresponding small change in the sampling expansion on the entire R,

Note that Theorem ¢ holds in particular for duration limited functions,

7. Time Jitter Error in the Sampling Theorem

When trying to set up the sampling sums it may also happen that the samples
cannot be taken at the instants k/W but at (k/W +6,), the sampled values now
being f(k/W +46,), These errors in timing give rise to the jitter error

UH = U D=1 D = 3 155+ 0,)si{mWe-1))

hw=—co

= 0k k .
= k-z_w(f(w—)- f(—W—+ dh))s1{:1:(Wt—k)} (tER)

under the hypotheses of Theorem 1,

The calculation of this error has so far been carried out using stochastic me-
thods-the 8, being regarded as a weak sense stationary discrete-parameter random
process having finite variance; see e. g, A. V, Balakrishnan [1], W. M. Brown-C,
J. Palermo [10], F. J, Beutler-O, A, Z, Leneman [3], and Beutler [2], It will
here be treated using strictly deterministic methods, based on the sole assumption
that 1dk|<d.for,k€ Z, 6>0 suffiicie:ntly small, This answers a question on the de-
terministic nature of jittered sampling also raised by J, R, Higgins [38],

Theorem 7 Let fEC(R)NL(R) satisfy (4.2) for 0<y<<1 with fr(v)=0 for
all [v|>1W, W>0. Then

N Ta) (O eSM (S, ', V) 6 log(1/6)
provided |6,| <é<min{1/W,e""*}, kEZ, W=>1, where M, is the constant of (7.3).
Regarding the proof, by Hélder’s inequality o »
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|1Gr)- G+ o))

@ whei<(3 |si{n<Wt-k>}lq)”"(ij

km—oo h=—co

for 1/p+1/g=1, The second sum is bounded by

)= 1Gr+ o] )

where b=b(p,8): = [¢~V'W?/**-1]  Again b>1 provided 6<1/W, W=1 and py=2.
The fi'rst term in (7.2) is bounded by (2b+3)¥%5||f |l noting that f/ €C(R) by
the hypotheses, Then, since W'<{1/6 for 0<v<1,

124 o)~ (o
(7.2) (2b+3)7supf{f(+) ~ £ +dk)lfc+( >

Iki>b+2

(2b +38) P (5D) P<<5'%exp{ (4/p¥) log(1/6) }<5™%e _
if one chooses p= (4/7) log (1/6) and takes gd<Ce~'/?, The second term in (7.2) is
now bounded by Lemma 2 by

2°ZI/PMfWrb“‘P”/”<2‘2”sz(56‘“,
Since the first sum in (7,1) is bounded by p, a combination of all estimates
yields

(7.3) | a) (0 | <572 1 | + 20 27 Mo Yolog(g).

The foregoing theorem seems to be new, Deterministic methods have previously
been used in Butzer-Splettstdsser [227 to study the jitter error for generalized sam-
pling sums which are discretizations of convolution integrals on R,

It is also feasible to study the jitter error in the case of not necessarily band-
limited functions,

Theorem 8 Under the hypotheses of Theorem 4 one has for W = (1/8)V*9,

r=1,

1) = 30 1+ 0 ) m W =) Yle<Ms (5, 17, 7,2, ) 0108(1/0)

fo = —00

jor g<<exp{-2(r+a)/(r+a+v)}, Where M;:=M,;+M,, M, and M, being the constants
in (4.7) and (7.3),
For the proof, split up the term in the norm as

U® - 3 (L) sitrcwi-k)} + ;j”(f(—v’%)— 175+ 0.))sitm w10},

k=

Whereas the first term is of order O(log W/W™*) by Theorem 4, that of the second
is 0(Slog 1/6) by Theorem 7,

According to Theorems 7 or 8, the sampling expansion also exemplifies stabi-
lity with respect to the nodal values, a uniformly small error in each of the nodal
walues produces a correspondingly small error in the recovered signal,
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8. Sampling Theorem for Weak Sense Stationary Stochastic Precesses

Since signal functions are often of random character, random signals play an im-
portant role in signal processing and in the sampling theorem, For this purpose one
usually uses stochastic processes which are stationary in the weak sense as a model
for them., Given a probability space (Q,A,P), a stochastic process, namely an A-
measurable function X =X(t)=X(,w) of ® &R for each tcR*, is said to be weak
sense stationary (W. S. S.), if its autocorrelation function (a, c, f,)

Ax,x(E,t+1):1= X (t,0)X(t+7,0) dP(@)
is independent of tER, i, €., Ay x(f,2+7) = Ax,x(T): = Ax(r), Here it is assumed
that X is square integrable with respect to P over @, i, e,,
E{|X(®|*}:=]o| X (¢, 0)|*dp(0) <oco (tER),
Such a w. s, s, process X is said to be bandlimited to the interval [ —aW,aW] if
the deterministic a, c, f, Ay is bandlimited there, we shall state the sampling the-
orem for such processes and then examine the time jitter error in more detail,

Theorem 9 Let X be a w, s, s. process with E{|X(t)]|*}<Tco, tER, such that

X is bandlimited to [ —-aw,axWJ], Then

N
k
Q) limE{|X(t,0) - X\, @ )si{m(Wt-k)}{*} =0,
timE( 11,00 - 32 ()
b) If in addition the a, c. f. Ax satisfies (4.2) for some Y € (0,1], then*)

@.1) [E(X (1,00~ 3 X(j7 +00,0)si{m(We=k)} 2302

h=—c

<M, (A, A%, V)6log(1/6)

for |6, |<6<<min{1/W,e-**}, k€L, W=1, where M, is the square root of the con-
stant in (8.6),
Concerning the proof of part a) see [68], Regarding part b), since X is band-

limited, one can rewrite the square of the left hand side of (8.1) by part a) as

(8.2) [ K

Z“] (X(W) -X (% + dk))si{n(Wt —k)} [2dP (@)

bw—o

= Z Z IA—(U(AMA_X) ‘k%)l ]Si{TE(Wt-k) }s;[{;r(Wt_k)}l

k=-c0 j=—o

B N P PPN

o N
" Here E{|f® - > g.(®)|2}is to be understood as lim E{|f &)~ > gu®[2}
K== Noe Em-N

© 1995-2005 Tsinghua Tongfang Optical Disc Co., Ltd. All rights reserved.
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where

o) as0) - o)
Under the notation
P(ig20):= gz, |av 8o ()| aczy
[877|< 8

the integral (8.2) is bounded by

(8.3) Z Z (

k== jme—oa

;d)ISI{zt(Wt— ) ysi{m(Wt-k)}|

<{2 |si{m(Wi- k)}lq Z l Z D(;_M_.-g,d)lsi{rr( Wt-i)}ll"}n/p

kwo—co fm=0! j=cc
in view of Holder’s inequality with 1/p+1/g=1, Now the latter double sum is
bounded on account of the Hausdorff-Young inequality by
N (o M e AT
(8.4) {'gwlsxmw::—;)l} {iZGD(W,d)} ,
where 0<<1/s+1/r—1=1/p, The right-hand sum in this product is beunded by, ne-
ting that A%(?) €C(R),

-5 26(r,0) +5) I ARlcs* +{ 3 D(gaa) }

til>C+2
where c=c(r,0):=[¢-*'W"t-1]  Firstly note that c(r,0) =2 provided g<<e-*°,
w=1 and ry>=2, Indeed, c=[e“*W?]1>[2.225]=2, Now noting that W< (1/8) for
Y€ (0,17,
(26 +5)1/7<(90/2) /"< (9/2) Vg TW T

<(9/2)"'exp{( fr + ,,,y_l )log(l/d)}

<(9/2>"'exxa{-leog(l/d)}<2”2(3/2)”e
if one chooses r= (5/¥)log(1/8), The second term in (8.5) is then beunded accor-
ding to Lemma 2 by

21/’4MAW?c(r’é)(l~4Y)/'<27/24MA6262/5.
Setting s=2r/(2r-1), then p=2r>0, and the left-hand sum in (8.4) is bounded
by (s')1/°<<s’ =2r, where 1/s+1/s’ =1, Likewise the first sum on the right in (8.3)
is bounded by p=2r, Combining all the results yields that (8.2) is bounded by

22100 o5 )

(8 6 (872 el Akl + 2¢¥°M, ) (6log(1/6))%,

uniformly in tER, This completes the proof,

© 1995-2005 Tsinghua Tongfang Optical Disc Co., Ltd. All rights reserved.
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Part b) of the foregoing theorem seems to be new. It would be of interest to
study the counterpart of part b) for duration limited w, s, s, processes or for not
necessarily bandlimited ones, The quantization error for such processes should be a
problem of further interest, The m"ethods employed in this paper should be suffi-
ciently powerful to handle the matter, On the other hand, the counterpart of
Theorem 4, namely the aliasing error for w, s, s, processes, as well as other
interesting generalizations, have already been studied in detail by Splettstosser
£651, [68].

General linear stochastic processes which are not necessarily stationary (in the
strict or weak sense), nor have independent increments, have been treated in But-
zer-Gather [17], however from the point of view of the central limit theorem with
rates, These general processes include some random noise as well as pulse train
processes as specific models,

9, Further Extensions

It is possible to extend the sampling theorem and the various problems con-
nected with it in many more ways than has been carried out above, Let me in-
dicate just a few of these,

(i) Sampling expansions involving sampled values of the function as well as of
its derivative, thus simple Hermite-type interpolation, if f, f/ €Cc(R) NL(R) and
[/ ]AE€L(R), then, uniformly in t€R,

o sm (Wt
() =1lim

e I (CO MO STIC )]

In case of bandlimited functions the limit is dropped, Note that the nodes above

are double the distance apart compared with that in (2.1),See [20] for the associa-
ted error estimates and the literature,

(ii) The first derivative can be approximated by sampling only the given
function, if f,f’ €C(R)NL(R) and [f/]J*€L(R), then, uniformly in tcR,

\rcosx(Wt—k) sina(Wt—k)
f'“)*l‘m"wzf(w?){ T~ Crwi- 1Y

k= -0

LS (SDE g
1@ =tim 3= ()
k*0

Also higher order derivatives may be represented in this form; in particular,

o 1\k+1
§7 () = lim2 Z (k/lv)v)z 1t +pp) + awy L2,

W
k#O
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see [20] and the literature cited there, and Lundin-Stenger T46] for a different
.approach,

(iii) The Hilbert transform, defined by
f7@) =limy (/%) {12, (f(t —u) /u)du, can be approximated using samples of f, if
Fec(R)NLR), fACL(R) and £~ €C(R), then (see [20], also [72])

ey - i N K\ {8in(x/2) (Wi~K)}*
“”“iﬂ‘f@j(w) /D Wi-%)

For rates in this regard see [70],

(iv) Reconstruction by generalized sampling sums, the function (sin t)/t in
(1.1) is replaced by g€Cc(R)NL(R) such that (1//2x)fpgw)du=1, gr(@)=0
for {v|>wv, some »>(, Then for each f€(C,(R) and uniformly in t&R,

(9.1) o) =;lyim@vl—§’— > (E)s(Zowi-x)).
i Py

One of the reasons for this procedure is to obtain better rates of approximation than
for the classical sampling-series. A concrete example of a function g satisfying the
above hypotheses is the kernel function of de La Vallée Poussin in (4.4), namely
8(t):=(3/v/ 2x) si{3t/2} si {t/2} for which v»=2,In this case the rate of approxi-
mation in (9.1) is of order O(1/W™*),r&cP, 0<<a<l if and only if f” €Lip(a;C).
If a=1, the saturation case, the Lipschitz class has to be replaced by the Zyg-
mund class. See Stens [741, A further example is the Fejér kernel g(t):=./1/2n
« (si{t/2})? with v=1, For each f&(C,(R), uniformly in t€R,

o=tk 33 () Gowe-m))

Here no condition need be posed upon the Fourier transform nor upon the modulus
of continuity, Note that the sum in (9.1) may be regarded as a discretized convo-
lution sum of the associated convolution integral of f and (aW /v)g(xWt/v), name-
ly of

1 aw (2w .
| 100 P g( (- )au (teR).

At this point the extensive work of I, J. Schoenberg and of his many students
and collaborators must (again) be emphasized, The difficulty with (1.1) is the slow
decay of the function si {#t} ast—s>oco, For this reason one first studied the piece-
wise linear analogue

9.2 s =3 (&) (e~ £),

k==

— -



# 13 A Survey of the Whittaker-Shannon Sampling Theorem and Some of its Extensions 207

where M,(t) is the roof function defined by M,(1):=Wit+1 in [-1/w,0], M,(1)
:=1-Wt in [0,1/W1, and M,(t):=0 if |t|>1/W, Note that S*(t) is a piecewise
linear interpolant with §*(k/W) = f(k/W), k€ Z, The purpose of the modern field
of cardinal spline interpolation now is “to bridge the gap between the piecewise
linear S*(t) defined by (9.2) and the cardinal series (1.1), It aims at retaining
some of the sturdiness and simplicity of (9.2), at the same time capturing some
of the smoothness and sophistication of (1.1).”For the literature see [55],[56]
from which the material may be traced.

So well-known results on singular convolution integrals ({18]) can be applied,
For further results in this direction see [62,63], [73,74].

(v) The truncation error, resulting when only a finite number of samples
(namely 2N +1) are used for the representation, has been studied very intensively
(see T4001), If fEC(R)NL(R) is bandlimited to [ —aW,aW] such that [fA]"€
Lip(a;c), and N>max{2W|t]|,r}>0, then

N
N i ENsitrowt - - (__.1__)
1 %Nf(w) sifrowe-1))| = o(—3e (N->c0),
This estimate is one of many to be found in U, Scheben [53] and [16], A typical
result in the non-bandlimited case states, If fEC(R) NL(R) satisfies (4,2) for v
€(0,11, " ELip(a;C), and N=[W2+U+4"7 41, then

logWw ) (Werco).

N
1) - g_ij(w’&)siww- ~0)} =0 (5

See [21], and for a different approach 1. Honda [397,

(vi) Replacement of the trigonometric system by general orthogonal systems
on a finite or infinite interval; see H., Kramer [42] and the many papers by A,
J, Jerri cited in [40], respectively, In particular, the sampling theorem for the
Walsh system, both for sequence-limited and duration-limited functions, is consi-
dered e, g, in M, Maqusi [47],[217, (647, Engels-Splettstosser [29]. Results concern-
ing the Haar system which will lead to sampling theory are to be found in [237,
[71] and _84], For the sampling theorem in the Legendre frame on R* together
with a new type of truncation error estimate see Butzer-Stens-Wehrens [25],

(vii) Sampling theorems for functions with multi-dimensional domain, basic
for picture processing and transmission, For such results in the case of the classi-
cal trigonometric system see Splettstosser [66] and the extensive literature cited
there, For the multi-dimensional Walsh setting see Butzer-Engels [147],

(viii) Implementation of the cardinal series for bandlimited functions, it is
possible to replace the transcendental (entire) si-function occurring in the cardinal
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series by simpler expressions which are easier to compute, namely by certain alge-
braic polynomials, as a matter of fact by a finite sum of the Taylor expansion
of si{w(Wt-k)} about the origin, Indeed,

S (S oy e |

(9.3)

=of L. )+o( L )
N vN (1.238)%
for p=5, |t|<N/tW, provided fEC(R) NL(R) is bandlimited to [-aW,zW] and
[fr1¢reLip(e;C),r €N, 0<<a<<1.So the resulting error consists of the usual trun-
cation error, here of order O(N™"™), plus the additional error of order Q(N-"2.
(1.238)-%¥), the error which results from the replacement of the si-function by
its Taylor polynomial (of order 5N -1 with p=5, which may be regarded as a one-
point Hermite interpolation), It is important that the number of terms N of the
truncated series be appropriately coupled with pN — 1 terms of the Taylor expansion,
in case p=5 convergence of the (modified) series in (9.3) is guaranteed; if p<<4
there are functions for which this series diverges a. e. with order a¥ for a>1,
See Butzer-Engels [15], -
(ix) Approximate integration over the real axis, The sampling theorem may be
applied to study the approximation of [, f(u)du by the Riemann sums (1/W)ZX5._.
« f(k/W) for W-»co together with the associated error estimates. If fCC(R) NL(R)
is such that f satisfies (4.2) for some y>1, then, for W>0,

Uﬂf(u)du—%i‘ 1G)| =v2x

k=-o

> A 2kaw) ’
fm—co

k>0

whenever the series on the right converges, If f€¢C(R) NL(R) is such that sup
ihi<s

[l Fm+h) — ) |[du=0(s") for some r €N and 0<e<1, then

s $31(5) = o)

k=-c

see Butzer-Stens [24] and the literature cited there. Such formulae have so far
been mainly studied for functions that must instead be holomorphic in some strip
around the real axis,

(x) Prediction of bandlimited functions from past samples, Shannon’s sampling
theorem states that each bandlimited fun:tion can be completely reconstructed from
its sampled values at a set of equally spaced instants of time on R, For many ap-
plications it is important to know whether it is possible to reconstitute such a fun-
ction from its samples taken exclusively from the past (prediction) via
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- kt
9.4) f@)=lim>» a, fl{t -—
M,; * ( w )

uniformly in tER. A closure theorem of N, Levinson (1940) (see also [83]) guar-

antees the existence of the so-called predictor coefficients a,, (independent of f, ¢
and w) for each T & (0,1), The basic problem however is the explicit calculation
of these a,,, Wainstein and Zubakov [78] calculated them in the form g,,= (= 1)*-1(})
provided T € (0,1/3), and Brown [9] as a,,= (~1)**'(2) (cosxaT)* provided TE
(0,1/2), Using power series expansions in the complex domain Splettstosser [66,
691 extended T to T € (0,1/2), respectively T€[1/2,2/3), witha,, = (= 1)k ("*%"1)

) (lf)h’ respectively a,, = — (*7*"/*) (2cos aT)*, where
9.5) b:=log(1/2+cos xT) /{log(~ 2cos nT) — log(1/2 —cos nT) },

Splettstosser [66] also generalized the Brown result to functions which are not ne-
cessarily bandlimited but whose derivatives of order r satisfy a Lipschitz condi-
tion,

The prediction problem can also be treated for random signals; see [66], In-
deed, if X(t) is a w. s, s, process with E{|X(?)|?}<<o0, tER that is bandlimited
to [~awW,zw], then

X(t) - ; = ("7 (2c0s er)kX(t —k—vz})lz}:o

uniformly in t€R, provided TE€(1/2,2/3), where b is defined by (9.5),

lim L{

n —co

Acknowledgement

It is a pleasure to take this opportunity to thank the many members of the
“DFG Schwerpunktprogramm Digitale Signalverarbeitung” (Bu 166,/29/31/33/36/38),
in particular Professors A, Fettweis (Bochum), H, D, Liike (Aachen), W, Schiiss-
ler (Erlangen), H, J, Tafel (Aachen), D, Wolf (Frankfurt) for many stimulating
discussions and suggestions during the various meetings of this research group in
the course of the past five years which were coordinated in an expert fashion by
Dipl-Ing G, Seifert (DFG, Bonn-Bad Godesberg). A number of the problems treat-
ed in the survey were posed there, Professor O, Lange (Aachen) kindled the au-
thor’s first interest in the sampling theorem,

The author would like to extend his special thanks to his research companion
Doz, Dr, W, Splettstésser (Aachen) for his unstinting help when writing up the
manuscript, The proofs especially of Theorems 5.7 and 9 benefited greatly from his
expert advice, Doz, Dr. R. L. Stens (Aachen) read the final version with meticu-
lous care and gave valuable suggestions, He aided especially with Section 5 as well
as with the proof of Theorem 2, Finally, the author wishes to thank the DFG for
their continued support,



210 HEHRXE EiE 198 34

Literature

[ 1] Balakrishnan, A. V., IRE Trans. Information Theory, IT8 (1962), 226—238.

[ 2] Beutler, F. J., Inform. and Control 26 (1974), 312-—340.

[ 3] Beutler F. J.-Leneman, O. A. Z. Inform, and Control § (1966), 225-—246.

[4] DBoas, R. P. Entire Functions. Academic Press, New York 1954 (Especially p. 220).

[51 Boas, R. P. Téhoku Math. J. 24 (1972), 121—125.

[ 6] Boas, R. P., Pollard, H. Amer. Math. Monthly 80 (1973), 18—25.

[71 Brown. J. L. J. Math. Anal. Appl. 18 (1967), 75—84.

£81 Brown, J. L. IEEE Trans, Inform. Theory 1T—14 (1968), 818—819.

[ 9] Brown, J. L. IEEE Trans. Inform. Theory, IT—18 (1972), §62—664.

[10] Brown, W. M., Palermo, C. J, IRE Trans. Inform. Theory, IT 8§ (1962), 206—214.

111 Buslaev, V. I., Vituskin, A. G. Izv. Akak. Nauk SSR, Ser. Mat. 38 (1975), 88T7—895(=Engl.
transl. in Math. USSR Izvestija § (1974), 867—894).

{12] Butzer, P. L., In: Geperal Inequalities II (Ed. by E. F. Beckenbach), ISNM Vol. 47, Bir-
kh#iuser, Basel 1980, pp. 299—331.

[13] Butzer, P. L. The Shannon sampling theorem and some of its generalizations; an overview.
In: Proc. Internat. Conference on Constructive Function Theory (Varna, Bulgaria, June
19381; Ed. by D. Vacov), to appear.

[14} Butzer, P. L.-Engels, W., Dyadic calculus and sampling theorems for functions with
multidimensional domain. Part I: General theory. Part II: Applications to dyadic sampling
representation (to appear).

(15] Butzer, P. L. and Engels, W., On the implementation of the Shannon sampling series for
band-limited signals. (to appear)

{16] Butzer, P. L., Engels W. and Scheben, U., Magnitude of the truncation error in sampling
expansions of band-limited signals., IEEE Trans. Acoust., Speech, Signal Processing. (to appear)

{17] ButzerP. L.-Gather, U., Math. Methods Apl. Sci. 1 (1979), 241—264, 346—353.

[18] Butzer P. L.-Nessel, R. J., Fourier Analysis and Approximation, Academic press and Birk~
hduser, New York and Basel, 1971,

(19] Butzer P. L.-Splettstdsser, W., Inform. and Control 34 (1977), 55—865.

[20] Butzer P, L..-Splettstdsser, W. Approximation und Interpolation durch verallgemeinerte Ab-
tastsummen. Forsch, Ber. NRW 2708, Westdeutscher Verlag, Opladen 1977, 57 pp.

[21] Butzer-P. L. Splettstosser, W., Inform. Sci. 14 (1978), 93—106.

[22] Butzer P. L.-Splettstésser, W., Signal Process. 2 (1980), 101—112.

23] Butzer P. L.-Splettstésser W,-Wagner, H. J., On the role of Walsh and Haar functions in
dyadic analysis. In: Proceedings of the Special Session on Sequency Techniques 1975. (In
Cooperation with the First Symposium and Technical Exhibition on Electromagnetic Compa-
tibility. Montreux, 20—22. 5. 1975; Ed. 8. Hiibner) Darmstadt 1975, iv+ 78 pp; pp. 1—6.

[24] Butzer P. L.-Stens, R., The Euler-MacLaurin summation formula, the sampling theorem. and
approximate integration over the real axis. (to appear)

[25] Butzer P. L.-Stens R. L.-Wehrens, M., J, Math. & Math. Sci. 3 (1980), 47—67T.

[26] Campbell, L. L., J. Soc. Indust, Appl. Math. 12 (1964), 117—130.

{27] Cheney, E. W,, Introduction to Approximation Theory. McGraw-Hill, New York 1966.

28] Dym'H.-McKean, H. P., Fourier Series and Integrals. Academic press, New York and Lon~

don 1972.



5 150 A Survey of the Whittaker-Shannon Sampling Theorem and Some of its Extensions 21

28]

[30]

[31]
f32]
{331

[34]

[35]
[36]

Ls1d
{381

[39]
[40]
[41]

[42]
(431
[44]
[45]
48]
[47]
[48]
[49]
[50]
{511
[52]
53]

[54]
[55]

[561

[57]

Engels W, -Splettstdsser, W,, A note on Maqusi’s proofs and truncation error bounds for the
dyadic (Walsh) sampling theorem, IEEE Trans, Acoust,, Speech, Signal proc, (to appear),
Engels W.-Splettstdosser, W., On Walsh differentiable dyadically stationary random proce-
sses, IEEE Trans, Inform, Theory (in print),

Ericson, T., Proc. IEEE 60 (1972),1554—1555.

Ferrar, W, L,, Proc. Roy. Soc. Edinburgh 48 (1925), 323—333.

Gervais, R,, Rahman Q, 1. and Schmeisser, G,, In: Numerische Methoden der Approximations
theorie, (Ed. cy L, Collatz, G, Meinardus, and H, Werner), ISNM Vol, 42, Birkhiuser,
Basel 1978i pp. 145—153.

Gervaisy R,, Rahman Q, I, and Schmeisser, G,, Simultaneous interpolation and approximation,.
In: polynomial and Spline Approximation (¥d, by Sahney B, N.). Nato Advanced Study Insti
tutes Series (Series C: Math, and physical Sciences), Reidel, Dordrecht 1979, pp. 203—223.
Hardy, G, H,, I. Proc. Cambridge philos. Soc. 37 (1941), 331—348.

Higgins; J, R., Completeness and Basis Properties of Sets of Special Functions, Cambridge
Univ, Cambridge 1977,

Higgins, J. R., [EEE Trans, Inform, Theory, 1T—22 (1976)s 621—623.

Higgins, J. R,, Review of Young R, M, [83] in Bull. Amer. Math. Soc. (N, S,) 5 (1881)»
324—329.

Honda, 1., Keio Engineering Reports 31 (1978), 21—26.

Jerri; A, J., Proc. IEEE 65 (1977)+ 15656—1596.

Kotel’nikov, V. A,, On the truncation capacity of “ether” and wire in electrocommunica-
tions (Russian), Material for the First All-Union Conference on Questions of Communica-
tions. Izd. Red. Upr. Svyazi RKKA (Moscow) 1933,

Kramer, H, P,, J. Math. Phys. 38(1959), 68—12.

Kress, R,, Computing 6 (1970), 274—288.

Kress, R., Math. Comp. 26 (1972), 9256—833.

Liike, H, D., Nachr. Techn. Zeit. 31 (1978) 271—274.

Lundin L,-Stenger, F,, SIAM J, Math, Anal, 10 (1979), 139—1860.

Maqusi, M,, IEEE Trans. Acoust., Speech, Signal Proc,, ASSP—28 (1980), 249—251.
McNamee J,-Stenger F.-Whitney, E, L., Math. Comp. 25 (1971)., 141—154,

Papoulis, A., Proc., IEEE 54 (1966), 347—955.

Pollard H,-Shisha, O., Amer. Math. Manthly 79 (1972), 495—499.

Raabe, H,, Elektr. Nachrichtentechnik 16 (1939), 213—228,

Ruchkin, D, S,, IRE Trans. Commun. Syst. CS 9 (1961),» 350—355.

Scheden, U,, Uber den Abbruchfehler bei Abtastreihen, Diplomarbeit, Lehrstuhl A fiir Ma--
thematik, RWTH Aachen 1§80, 132 pp.

Schempp, W., C. R, Math. Rep. Acad. Sci. Canada 3 (1981), 197—202,

Schoenberg, I. J., Cardinal Spline Interpolation. (= Regional Conference Series in Applied
Mathematics, Vol, 12). Society for Industrial and Applied Mathematics, philadelphia, Pa,
1873, 125 pp.

Schoenberg, I. J., On the remainders and the convergence of cardinal spline interpolation.
for almost periodic functions, In: Studies in Spline Functions and Approximation Theory,
Academic Press, New York-San Frarncisco-London 1876, pp. 277—303.

Schénhage, A,, Approximationstheorie, De Gruyter, Berlin 1971,



212 BEHARS F®E ' 198 3%

[58] Shannon, C, E,, Proc. IRE 37 (1949), 10—21,

[69] Sofman, L, B,, Dokl. Akab. Nauk SSR, 215 (1974), 1313—1316 (=Engl. Transl, in Soviet
Math. Dokl. 15 (1974), T04—708.)

{60] Someya, I,, Waveform Transmission (Japanese). Shyukyoo Ltd, Tokyo 1949,

[61] Splettstosser, W,, In: Linear Spaces and Approximation (Ed, by, P, L. Butzer and B, Sz,.-
Nagy) ISNM vol, 40, Birkhduser, Basel 1978, pp. 615—628.

[62] Splettstésser, W,, Arch. Elek. Ubertr. 32 (1978), 267—275.

[63] Splettstosser, W,, Math., Methods Appl, Sci. 1 (1979), 127—137.

[64] Splettstdsser, W,, Error Analysis in the Walsh sampling theorem, In: 1980 IEEE Int, Symp.
on Electromagnetic Compatibility, Baltimore, Inst, for Electrical & Electronics Engineers,
Service Center, Piscataway, N, J. pp. 366—370.

[65] Splettstdsser, W., Z. Angew. Mech. 61 (1981), 235—241,

[661 Splettstdsser, W,, Bandbegrenzte und effektiv bandbegrenzte Funktionen und ihre Praediktion
aus Abtastwerten, Habilitationsschrift, RWTH Aachen 1981, 65 pp.

[67] Splettstosser, W,, Sampling approximation of continuons functions with multidimensional
domain, IEEE Trans, Inform. Theory, (in print),

[68] Splettstdsser, W,, Sampling series approximation of continuous weak sense stationary proce-
sses, Inform, and Control, (in print),

[69]1 Splettstésser, W,, On the prediction of bandlimited signals from past samples, (to appear)

[70] Splettstdsser W,.-Stens R, L, Wilmes, G,, Funct, Approx. Comment. Math. 11 (1980), 39—56,

[71] Splettstésser W,-Wagner, H, J,, Z. Angew, Math. Mech. 57 (1977), 527—541,

[72] Stenger, F,, J. Approx. Theory 17 (1978), 222--240,

[73] Stens, R, L,, Signal Process. 2 (1980), 173—1786.

[74] Stens, R, L,, Error estimates for sampling sums based on convolution integrals, Inform,
and Control 45 (1980). 37T—47,

[76]1 Triebel,H,,Fourier Analysis and Function Spaces, Teubner, Leipzig 1977 (Especially pp. 30, 48f).

[76] de La Vallée Poussin, C, J,, Sur la convergence des formules d’interpolation entre ordon-
nées équidistantes, Bull, Acad, Roy, de Belgique (1908), 319—410.

[71] Vituskin: A, G., Approximations of entire functions and coding of signals with finite spe-
ctrum, In: Approximation Theory II (Ed., by Lorentz G, G,-Chui C, K,-Schumaker L, L.),
Academic press, New York 1976, pp. 269—281,

[78] Wainstein L, A,-Zubakov, V D., Extraction of Signals from Noise, Prentice Hall, Engle-
wood Cliffs, N, J, 1962,

[79] Whittaker, E, T,, Proc, Roy. Soc. Edinburgh 35 (1915), 181—194.

[80] Whittaker, J, M., Proc, Math. Soc. Edinburgh 1 (1929), 163—176.

[81]1 Whittaker, J. M., Interpolatory Function Theory. Camdridge University Press, Cambridge 1935,

[82] Wunsch, G., Systemtheorie der Informationstechnik. Akademische Verlagsgesellschaft Ge-
est + Portig, Leipzig 1971.

{83] Young, R. M., An Introduction to Non-Harmonic Fourier Series, Academic Press, New
York 1980.

[84] Ziegler, W., Haar-Fourier Transformation auf dem R*. Doctoral Dissertation, Technische
Universitit Miinchen, 1981, 93 pp.

[86] Zygmund, A., Trigonometric Series. Reprint of Second Edition. Cambridge University
Press, Cambridge 1968.



