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Abstract

The aim of the present paper is to study globally the Riemannian manifold admitting
two or more mutually orthogonal families of totally umbilical hypersurfaces of which cach
is Einsteinian. This paper consists of four parts: (i) to establish ancw the canonical form
of the metric of (M,g) admitting p (p==2) families of mutually orthogonal totally umbilical
hypersurfaces from the standpoint of global diffe.rcntial geometry; (ii) to prove in a n-dimen-
sional (n>>2) Einsteinian manifold E, of nonvanishing scalar curvatuare therc doesn’t exist
onc family of compact totally geodesic Einsteinian hypersurfaces (Theorem 1); (iii) to prove
in a n-dimensional (n2>=5) Einsteinian manifold E, 6f nonnegative - scalar curvature R therc
don’t exist two orthogonal families of totally umbilical but not geodeéic complete Einsteinian
hypecrsurfaces (Theorem 11); (iv) to show thata n-dimensional (n>=5) Riemannian manifold of
negative constant scalar curvaturc B, admitting p (pZ=3) mutually orthogonal families of
compact, totally umbilical but not geodesic, Einsteinian hypersurfaces, is of constant curva-

ture, if and only if a number § (defined in section 5) vanishes (Theorem III).

1 Introduction

Recently Shen Yi-bin proved in []] a very interesting theorem:

If a Riemannian space V_ of dimension n (n>>3) admits thice orthogonal famflies
of totally umbilical hypersurfaces, among which_two families are Einsteinian and the
third one are of constant curvature, thei the space V, itself musr be of constait curca-
ture. .
Shen’s proof of this theorem is based upon the following beautiful lemma:

If a Riemannian space (M,g) of dimension i (1 >3) admits three mutually orthogonal
families of totally umbilical Einsteinian hypersurfaces, then the normals to these hy-

persurfaces are each coincident with a Ricci principal direction of M,

* Received Nov. 18, 1981.
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This lemma will be used in the last section of this paper. I cannot but point
out that this lemma is local in nature and answers only partly the question whether
a Riemannian space admits three mutually orthogonal families of totally umbilical
Einsteinian hypersurfaces. The aim of the present paper is to study this question
{rom the standpoint of global differential geometry. Thereby we have proved some
negative results (Theorem I, II, III). We have to emphasize at the beginning that
all the manifolds here considered are connected and ¢ differentiable, and the Rieman-
nian metrics endowed on them are positive definite, We shall concentrate our atten-
tion to the Einsteinian manifold, because they are the simplest next to the space of

constant curvature,

2 Some fundamental concepts

To deal with globally the problem here considered, some fundamental concepts
have to be clarified in advance. Let (M,g) be a Riemannian manifold of dimension
n (n>1), and S be a differentiable manifold of dimension n-1, Let J be an open
interval a<{t< b of R or an unit circle. Suppose there exists an imbedding ¢ of Sx [
into M. For any fixed t,€], the image of Sx {t,} with the induced metric is'a
hypersurface of (M,g) and will be denoted hereinafter by S;,. The collection {S,{tE€ "
is called a family of hypersurfaces admitted by (M,8). According to this definition,
all the hypersurfaces belonging to the same family are topologically equivalent,

Now suppose that the Riemannian space (M,g) admits p (p>=2) families of mutu-
ally orthogonal hypersurfaces:

@, S~ (M,g)y (a=1,2,...,D)
of which each is totally umbilical in M. Let (x2,...,x") be a local ccordinate system
of §(!' valid in a coordinate neighborhood UcS{'’, Since ¢, is a dif eomorphism of
Ux],onto @ (UxI), ®.(UxI,) isan open set in M, on which (x',...,x") (x'€171)
define a coordinate system, and x!=Const. represents a hypersurface belonging to the
first family. The line element of M is then given by g;, (x) dx' dx/, Let us integrate
the linear differential equation '

Y gl 7;’;—, =9

i-t
and find out n-} independent integrals
fz(x‘,...,x"),...,f,,(xl,...,x"),

Since g'!' 40, we have
(?(fg,---’f,.)
(x5, ..., x")
Let us write ¥'=x', ¥/=j,(x',..,x") for 2=<j<n, then (¥',...,x") form a new local

+0.

coordinate system of M, in which the line element becomes gij (z)dx? dx! with
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L= (k=2,..-,n)9

whence g,,=0 for k=2,...,n, so that the line element takes the form

ds? =g, (& (7Y + Y &, () d7da".

U, y=2
Now for simplicity we shall omit without loss of generality the short bars over the
“letters x and g, If the hypersurfaces x'= Const. are each totally umbilical in M, we
can write g,=A qa,(x"), where a,(x*) are functions of x*,..., x" only (See [2],
p.182.). As to the second family of hypersurfaces
@,:S2) x I,>M,
the parameter t, <], specifying the hypersurfaces of the second family may be re-

.

presented as a differentiable function f(x!,...,x"). According to our definition, at any

of of
X

point one of the derivatives gxi7 T o must be nonvanishing, Now the two hyper-

surfaces x' = Const, and f(x!,...,x") = Const. intersect orthogonally, we have

: 1af — pll Qfﬁ_._
28" G T =0

and hence f is a function of x*,...,x" only. Suppose %{‘*0» we can replace the
coordinate x? by f, and write it as ¥* again, then % =Const. are the equations of
the second family of hypersurfaces. Meanwhile we shopld emphasize that according
to our construction ¥* is like x' a globally defined coordinate function effective on
the whole manifold (M,g). Let us denote by

Pa (2, %%, 0, X")y ey 9, (F5, .., X")
the n-2 independent integrals of the differential equation

azzf(?}b_ + a3 ai-;— +a*" sz

gxt ax* ox" 0s

and use them as the other n-2 new coordinate functions ¥*,...,%". Then during chang-

ing coordinate systems we have

gt = " gi"”.ai'l,’lf.:,,l,, ; 2v
DL P

for 3<<t<n, whence g,, = 0. The line element of (M,g) is then reduced to the form
ds* =g, (X) (dx")? + Aa,, (£°,+,x") (dx*) * + A&, , (3*,u.0,7") dx"d¥",

where r,t=3,....,n. We omit the short bars over the letters x and a once again. Now

oY, _
axv =0

the family of hypersurfaces x* = Const. are also totally umbilical, the ratios & ,:d,
(7,t,4,0 = 3,....,n) should be functions independent of the variable x*([2],p.182), thus
we can write
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ds? =g, (x) (XY + Ag,,(x%,...,x") (dx*)* + Ba,,(x3,...,x") dx"dx!

with Bs£(. By the same argument we assert

€,::Ba,, =a function independent of xZ;

Ag,,:Ba,, =a function independent of x!,
Accordingly, we write

g, =B¢,(x',x*,...,x"), and Ag,, = Bd, (x*,x%,...,x").
The metric of (M,g) is then reduced to the form

ds® = BLo, (x1,x%,...,x") (dX) 2 + ¢, (x%,... ,.X") (AX*) % + a,, (X°,...,x") dx"dx'];

If (M,g) admits p>>2 families of orthogonal totally umbilical hypersurfaces, we can
repeat the arguments used above step by step to reduce the metric of (M,g) to the

form (i,j,k=p+1,...,n)

n

»
ds? = e“’[z ¢ (x7 xRy (dx*y2+ ¥ a,.l.(xk)dx"dxf],

L
and at the same time xl,...ix:’ are each effectivemo:lﬂthe whole manifold (M,g). More-
over, the equation x” = Const, represents the totally umbilical hypersurface belonging
to the ath family, where a=1,...,p.
This result was proved locally by Shen Jin-yuan (former name of Shen Yi-bin)
already in 1965 (See [3]1). The aim to write here a new proof is to emphasize the
global nature and the geometrical meaning of the coordinate functions x!,...,x*. Ob-

viously, the functions ¢ is defined within an additive function of x**!,,., ,x", But the

partial derivatives —g’%—, ggf’“" gz/?' are uniquely defined on M. These partial

derivatives will play an important role in our subsequent arguments, and their geo-
metrical meaning will be explained in section 4.

Now assuming that the hypersurfaces x" = Const., 1<Ca<{p, be Einsteinian, For
the sake of later reference, we summarize some results due to Shen Yi-bin [1] in the
form of following.

Lemma 1, If a Riemannian manifold (M,g) of dimension n (n>3) admits p (p=3)
mutually orthogonal families of totally umbilical hypersurfaces, of which each is Eins-
teinian, then the p Ricci curvatures of M along the normals of these hypersurfaces are
equal to the same constant . Moreover, if we denote by R, and Q, respectively the scalar
curvature and the mean curvature of the hypersurface x® = Const., then the p quantities
n-—

o,=R, - (n-2
1( )

are identically equal to the same constant @, and A= ;(E -0).

3 Compact totally geodesic hypersurfaces

Theorem 1, A n-dimensional (n>>2) Einsteinian manifold E, of nonvanishing scalar

© 1995-2005 Tsinghua Tongfang Optical Disc Co., Ltd. All rights reserved.
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curgature cannot admit a family of compact totally geodesic Linsteinian hypersurfaces.
If the constant scalar curvature of E, is wanishing, then the family of compact Eins-
teigian hypersurfaces totally geodesic in E, must be geodesically parallel, and the space
E, itself must be locally reducible to the product of a hypersurface belonging to the
family and a line segment.

Proof. Let)the Einsteinian manifold E, of nonvanishing constant scalar curva-
ture B admit a family of compact (n-1)-dimensional submanifolds as its totally geo-
desic hypersurfaces. Applying the result of the preceding section, the metric of the
manifold (M,g) is reducible to the form

ds® = g, (x) (dx")* +g;; ) dxidx) (i,j=2,...,1).
In view of the formula ([2], p.181, (53.13)) and recalling the coefficients of the
second fundamental form Q;, =0, we find g;; (x) are functions independent of x!,
i, e,
ds* =@ (x%) (dx')* +g;; (x*)dx'dx/, (1)
where a=1,2,...,7 &,j,k=2,....1 ®(x)>0; and g;; (x*) are functions of x*,..., x”
only. As emphasized previously, x' is a well defined function specifying the dif-

ferent hypersurfaces of the family, and the orthogonal trajectories to this family are

~ the x'-curves, Along these curves, ‘p:“'(%:’r and is therefore a well defined smooth

. function on the whole manifold (M,g). The metric induced on the hypersurface x!'=
Const. is B

ds} = g;; (xtydx'dx’, . (2)

Since the hypersurface S: x! =Const. is totally geodesic, the coeffiéients Q,; of the
second fundamental form of § in E, must be identically zero, By the Gauss-Codazzi
equations for a hypersurface, we have
Ryju=Ruj (Wijk=2,..,1),

where (R;;,.) and (R,;.,) denote the curvature tensors of the hypersurface S and of the
ambient space E, respectively. Mor'eover; the Ricci tensor of § is given by

Rij= ~8"Ryju=~8"Rpijx=Ri;j + & 'Ry 3
and the scalar curvature R of the hypersurface S by

R=g"/R;;=6"'R;;+878"R,i;; =R - 28"'R,,.
Since both E, and § are Einsteinian, putting

Ri; =P8 Ro = zfi'guw )

we have

i

Rz(”_l)p, R R,

whence
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n-2

p= EYCRRT ‘R = Constant =0,

Using (3) and

R 5 - R
R;; =ﬁ‘:~1*5.‘,‘; R.‘j='7i~gijy

we have

Riij= - 8118 - (4)

__R
nn-1)
But by direct application of a classical formula (See[2], p.20, (8.9)), we find

Run= 120 {1).00)_ L o0 o0 (5
2\ gxigx! i) gxt 49 gx' g’
Equating the right members of (4) and (5) and making the substitution ¥ =1np, we
find

Yyt '21'"1’,:1[’9:': - n(tff D g (I,7=2,3,...,n), (6)
where ¢,;, ¥,;, ¥,:;j, denote the covariant derivatives of the scalar function ¥ with
respect to the Riemannian connection induced by the metric (2), Since the hyper-
surface S is compact, both the supremum and infimum of the function % on § are
attained at some points A,B respectively. Consequently,

% (A =0=9,,(B)  (i=2,3, ..,n).
The matrix ||y, ;;l| is negative definite at A and positive definite at B, However, the
matrix ||Rg,;ll is always positive definite if >0, and always‘negative definite if
R<C0. Thus ’We end at a contradiction, and the first part of our Theorem 1 is proved,
If R=0, the equation (6) becomes

1
11’, iit E“lb’ i’fl), I 0.
Multiplying with g’/ and summing in i and j from 2 to »n, we find
lgradﬁbl =8”11’, ¥, § = 2A%.
where A denotes the Beltrami-Laplacian operator on §. Integrating over the compact

hypersurfaces § with volume element dv, we find

j- |grad p|*dv = 2J AYdo = 0. (7)
We conclude from (7)

grad ¥ =0, (8)

and hence @ =expy is a function of x' alone, By changing the coordinate function
x' properly, the metric of £, is then locally reduced to the form

ds® = (dx1)? + g, ; (xtydxidxi, , (9)
The space E, is then locally decomposable into the product of a hypersurface and a

linc segment. The hypersurfaces of the family here considered are obviously geode-
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sically parallel. The proof of our Theorem I is complete,

4 Complete totally umbilical hypersurface

In this section we shall use a theorem due to Morio Obata, let us quote it as
(See [4], Theorem A)
Obata Theorem. [n order that a complete Riemannian manifold (M,g) of dimension
n (n>2) admits a nonconstant function ¢ such that v xd® = ~ c*®X (c is a positive constant)
holds true for any tongent wvector X, the necessary and sufficient condition is that this
manifold should be isometric globally with a n-sphere. of radius 1/c in an euclidean
space of dimension n +1. '
Even though this is a global theorem, yet in any coordinate neighbortood of
the coordinate functions (x!,...,x"), the condition
Vxd® = —c*oX 10
is equivalent to
Q= ~ceg,; (i,j=1,...,n)
where (g;;) is the metric tensor in the specified coordinate system, and @,;; is the
second covariant derivative of the scalar function ¢ with respect to the Riemannian

connection derived from (g;;). In fact, (10) is equivalent to

ki 99 _Q__): _c2p. O
Va‘l;(g axi oxt AP an
for i=1,2,..., n. Recalling

0 i il j
=g -e (),

Vo (o) ={a s

and

P = xigx

and developing the left side of (11), we get
P,;;=~c*pg,; (,j=1,2,....,m) (12)

immediately. Since all the calculations are reversible, (11) is also a consequence of
(12). Thus we can say (12) is a local representation of (11).

Now we are in position to prove our

Theorem II. If the constant scalar curvature R of an Einsteinian manifold E, of
dimension n (nz=5) is non-negative, then E_  cannot admit p (p==2) families of orthogo-
nal, totally umbilical but not geodesic, complete hypersurfaces of which each is Eins-

teinian.

© 1995-2005 Tsinghua Tongfang Optical Disc Co., Ltd. All rights reserved.
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Proof. Evidently, if merely for the purpose of proving our Theorem T, we need
to consider the case p=2 only. But the general formulas which we shall derive are
useful in the sequel, let us still assume p>=2, For convenience, we shall use the
following notations:

Q,=Mean curvature of the hypersurface x” = Const., R =Scalar curvature of the
space E_,

do 8o

0a=”a“;cr; 0¢ﬁ=W9

and
H s ,1,.,, - ,_{ !22 + + !!2 + ~*~.._1 R}
(n-1°* Lo ¢ n ‘

Since E, is assumed being an Einsteinian manifold, and admitting p (p>=2) families
of orthogonal totally umbilical hypersurfaces, the normals to these hypersurfaces
trivially coincide with the Ricci principal directions of E,, and hence the mean
curvature Q_ depends upon the variable x® only ([5], p.99). According to our result

in section 2, the line element of E, is reducible to the form

F4
ds? = ez"{z): @ (x",x") (dx"): +a; ; (x*)dxidxi },« (13)
a=1
where i,j,k=p+1,...,n and the coordinate functions x!,...,x” as well as the func-
tions—ggg are defined globally on the manifold E,. The unit normal vector to the
hypersurface x“=Const. at a generic point may be represented by the components
1 a
Z;=mda (a=1,2,...,0),

and the coefficients of the second fundamental form (See[2], p.148, (43.7)) are

-1 . .
@ = . — . .e 1 = ()N
Qxl e"\/(p' al]e oa ( 7]1 p+19 )
On the other hand, since every point on the hypersurface x“ = Const. is an umbi-
lical point, the relation

« Q
(a) — 2
Q5 S 2 1 P

holds truc. tlence we have

n— 1\
Q, = (—~-~>“ e-°o2,
Qll

and (13) can be reduced to the form

£ 1\ 2 .
dst = 2(”9 1) 02 (dx)? +e2a;, (x¥)dx dxi . (1)

a~=1 a

Since M is connected and @,5£0, without loss of generality we may assume o, >0.

© 1995-2005 Tsinghua Tongfang Optical Disc Co., Ltd. All rights reserved.
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On the x°-curves g, and the differential of arc length ds are connected by the rela-
tion
2, ds

TeTplq axe
which provides a geometrical interpretation of the function ¢,. Besides, when 1<8
<p, and B+#a, the function

e0,= .‘Q“ v P,
n—1

is independent of xf., Hence we have a relation constantly used in the sequel:

oo

Ogp = xRt =0,0p (a#B)

Let us write for brevity

Ca:(n— ]>~, a function of x° only,

a

and

Bea=C 0%, 8ij=€Ya;;(xk),
where ¢ =1,2,..., p; i,j=p+1,...,n, and all the components g,,=0. Now using the
Lemma 1 of section 2, we have

_Q o -w B.- R ., ,_R
Rﬂ n’:’i(”’ 2)-——0), Ri]“ ';;‘gijy A”hn""’

for i,j=p+1,...,n. Then by the same arguments as we have used to derive (4), we

find easily

5 - _ R - :
Rai}a n(n_—l) gx] gaa‘ (15)

When p+ 1<i,j<{n, through direct application of the formula (8,9) of [2,p. 20] and

making use of the relation ¢, =0,0s for a8 to simplify the result, we find -

» ,
= - « 1 1 Cq
Riije = Caaa{ qa.iy + (Ua ;’:.1 _Cl; Y ‘a’z‘-)gii}: (16)

where

G = aifzg,,,j_%{l}
@i axigxi gxt \ij

with i,j,l=p+1,...,...,n. Equating the right members of (15) and (16), we find

Lo — -] Q"Q; ) .- :
ga.l! H(Ga + (n__ 1)2H gtlo . (17)
Define
' Q9.
= e Ll R
Py =0, Hn- 1)

Then making use of the fact that Q,,...,Q, and H are independent of the variables

© 1995-2005 Tsinghua Tongfang Optical Disc Co., Ltd. All rights reserved.
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xP*1,...,X", we have a trivial relation y_;;=0,;; fori, j=p+1,...,n. In this way (17)
is reduced to

Yoii= — HY.8i; . » (18)
According to our assumption that all the p hypersurfaces, one taken froxﬁ each family:

x! = Const., x*=Const.,..., x=Const.,
are complete, their intersections must be complete also. To any one of these inter-
sections, say Q, of dimension n-p, we can apply Obata’s theorem. If for certain
e(l<<a<{p), the functions ¢, were not identically zero, taking account of (18), ¥, must
be a nonconstant function. However, H is a positive constant on the intersection Q,
because it depends upon the variables x',...,x* only. Therefore, according to Obata’s
theorem, Q must be isometric globally with a (n-p)-sphere of radius 1/./H. Let us
take a;; (x*) dx*dx/ to be the canonical metric of a unit (n-p)-sphere, then
e*°a; ;(xtydx‘dxi,

being the fundamental form of a (n-p)-sphere of radius 1/v/H, must be identical

with --]»a,.,-(x")dx"dxf, and hence exp(20) =1/H. Thus

H
1 & 2.0, Q.,9!
O = — - ,‘.‘,lnH:—, atfa = - e
2 ox , ne n-1H’
2 0i+——R
et n
0.9
and =0, + AL = ),
v Hn-1)*
This result is contradictory to our assumption ¢,40, Thus we are forced to con~
clude
‘([,71:0:1/)2:... :1!}',3
and hence

2.9,
O,= — w8 for ¢=1,...,p.
¢ (n-1)*H
By the relations o,,=0,05, We find at least one of the functions Qf, Qf, -, Q,
must be zero, and consequently, one of ¢ ,0,,---,0, must be zero, But this is impos-~

sible, since the metric of E,  is assumed positive definite. By these contradictions

n

our Theorem II is completely established.

5 Riemannian manifold of negative constant scalar curvature

It may be interesting to investigate when a Riemannian manifold admits p (p>2)
mutually orthogonal families of compact totally umbiiical but not gecodesic Eins~
teinian hypersurfaces. For this purpose let us suppose that the manifold (M,g) be of
negative constant scalar curvature R, this case is important in view of our Theorem
II. We shall prove the following.

© 1995-2005 Tsinghua Tongfang Optical Disc Co., Ltd. All rights reserved.
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Theorem III. Let a n-dimensional (n3>3) complete and simply connected manifold
(M,g) of negative constant scalar curvature R admit p (p=3) orthogon.l families of
compact, totally umbilical but not geodesic hypersurfaces, of which each is Einsteinian.
Then (M,g) is a space of constant curvature, if and only if a number =0, where

td .
— n-p n-—-p 9
8= — e (D - e 5 — DA,
R=n E(n—l)‘ PP
and o, 4, Q, are interpretated as in Lemma .

Proof. Necessity of the condition =0 is almost trivial. For (M,g) has been
assumed complete and simply connected. If it is of constant curvature K<((, accor-
ding to Cartan-Hadamard theorem it is Jiffeomorphic to R", and we can write its

metric in the form

Z":(dx")"‘
il
-5 % o

=1

dst =

with Z(x")'~'<~4/K. In such a manifold cach one of the hypersurfaces belonging
i1 I
to the family
x'=Const. ¢ (Jc|>2/v"“K)

is totally umbilical. It is casy to verify that these hypersurfaces have constant
curvature K(1+ 1K ¢*)>»0. Since each onc of them is complete, they must be com-
pact ([6}, p.28). The index i may be any integer from I to n, and therefore the space
M of negative constant curvature admits n families of compact mutually orthogonal
hypersurfaces, of which cach is Einsteinian, totally umoilical but not geodesic in
M. That means in our case p=n, and =R -ni=(, pecause 2 is the Ricci curvature
of (M,g).

Now we are going to show that the condition =0 is also sufficient. For the
case we are considering, we apply the Gauss equation

Ruijn = (Q:1Q4; — Q4:Q:)) + Riijn (Myi,jk=p+1,....n)

to the totally umbilical Einsteinian hypersurfaces x“ = Constant (1<<e<{p) and then
contract the indices h and k, we find

R, = 2\, 5 1 5
n_]gij“‘ n~:~]) n-2)8;+Rij+~—Raijqa- a9

aa

Combining (16) and (19) and using the relations

n—1\% - —
Cu: ( 1) [} g”E:i):R_ply grmzcaoﬁa

Q.
we find
P
o D aa \ 2 ‘Qa'ert
6 ii =N\ 8ii ~Rij )0, = “r¢ i =y B
0. (n—1g‘ R,) 15 ;ag 8= yys B0

© 1995-2005 Tsinghua Tongfang Optical Disc Co., Ltd. All rights reserved.
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Multiplying this equation with g/ and summing in i and jifrom p+1 to n, we obtain

n-=p

g, = —00,— Q.0 (20)
& aii (R-1)* : :
where
’ »
_5_n-p n-p 2
§=R- 0+ P o QF - 21
R ny £ TR s — DA v @n

is a function of x!,...,x? only. By means of the relations (See the Lemma I)
2::'41:—:,1‘ — :J]. '——a)
Q 3 n-2 (Rp ) ’ A 9 (R ) s

(21) is reduced to

4 T - !.. ——— [ s e amaanae i - n,—_ I) p(n p)
o= =, (P-2)R¥ 1)(n z>SR” 2 PRI PEC LY @

Note that R is a function depending upon xf only.

Define 3
Ao, = —g'lo,i;,
where the indices i, j run from p+ 1 to n, and rewrite (20) in the form

Bo,=b0,+ ' 1”)_ 2.0 (23)

Now imposing the assumption §=0 on the relation (23) and then integrating its
reduced form
n-p

Ao, = - 1y Qalde (24)

over the intersection Q of the p hypersurfaces:

x‘ = Const., ..., x’ = Const,.,
we find Q! =0. and Q,=constant for ¢=1,...,p. By the way we have to remind
that the n-p dimensional submanifold Q is compact, vecause the hypersurfaces
x“ = Const, have been assumed compact. Then (24) is reduced to Ag,=0 and hence

we obtain
0 = ( O'(IAUad'U :j- g' ‘G«z ’Or' ,dl)
40 Q

Consequently ¢, ; =0, and o, is a function depending upon x',...,x” only. Asa result,

we can write
e’ =exp £(x!,...,x") @ (x*!,. . ,x");

On the other hand, integrating the equation g,;=06,0s with respect to xf (8-£a), we

deduce

0, =€, (x%, xt) = e/, (%, x¥)., (25)
In view of ¢, ;=0, ¥, must oe a function of x* alone. Then makiﬂg use of g5 =0,0;s
again, from o, =e/P(x*) we find

‘,Q,f = el (xf) (8=

ot elPp(xf)  (8=1,2,....p) 26)

and

© 1995-2005 Tsinghua Tongfang Optical Disc Co., Ltd. All rights reserved.
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eoi=("g ) e |
e —CO =1 - € X .
o= 0202 = (2 XCS

«

By changing the coordinate functions x!,..,x? properly, the metric of (M,g) is re—v
ducible to the form
P
ds? = e”[z (dx")* 4 a; ;(xMydxidx’ ], Q20D

a =]

in which f is a function of x!,...,x" only, and i,j,k =p+ l,..,n. To penetrate a step
further, let us calculate the Ricci tensor of the hypersurface
xt = Const. ¢

of which the induced metric is
: . »

ei:‘[Z(d,\c“)2 +a;;(xydxidx! ] 27%)
a=12

with F=7f1,... Using the formula (28.6) on the page 90 of [2] to calculate the

ds?

It

components of the Ricci tensor of the hypersurface x!' =c¢, we find

~Ri=m=3) G -F 0 +6.6(AF+ n=-DAD (28)
and
“ RV =0 (@.B=2,8,0D5 F= P+ 1e,h),
where

~ ] - 1 v~
s _ Of z . Of 5 af \* 1N 0%f
Fo= b fu= 000 ab=20(0) . ai=3 L.

o - o =3

By means of (26), we find R{} =0 for a-#8. In order to make R.’ = RY; for a=+8,
we have necessarily '
o7 (Y=ot (Y 9)
axﬂ axﬁ axﬂ 0 ] ~

Combining (26) and (29), we find

awa —-@L f 5

Sxe = Gwh or a= 8.
Since v, depends upon x“ alone, from this equation we deduce

a’lp'L =
9x°
for @ =2,3,...,p. Thus ¥, =2a,x°. Then by integrating (26) we obtain

a constant 2a.

el =a, D ()t + p(x), (30)
@=]1

where ¢,(x!) is a function of x' to be determined. The same calculation can be

applied to the other p-1 families of hypersurfaces xf = Const. (£=2,w.,p), and it follows

4
—el=ap > () + by (XF). (31

=1
By comparing the coefficients of x” (Y= 1,8) in (30) and (31), we find a, =a;, and
hence ¢,(x') = ¢g(x#) = Const, Thus a,=... =a,=Const. @ ¢, (x!) =+ =¢,(x*) =Const,

b. Now we.can write
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, »
—ef=a> (x")*+b,
a=1

and for the hypersurface x! =c we have

y
—ef =aZ(x“)z+acz+b.
a=2

Substituting this result into the expression for R(a=1,2,....,p), the components %

of the Ricci tensor for the hypersurface x! = Const. c are found to be

4
-R&= e27[202 (n-p) Z(;’c“)Z —2a(n +p-4)(ac* +b)].

am=2l
For the hypersurface x!=Const. to be Einsteinian, it is necessary that (recalling
n—-1>2) for ¢ =2,..,p

RY = e*/ x (constant) (use (27%)).
therefore we have either p=n or a=09.
(i) p=mn. In this case, the metric of (M, g) is reducible to

2 (dxi)?
ds*= ——-=b
[ eret]
a -]

of which the sectional curvature is a negative constant K, = 4ab.
(ii) a=0. The metric of (M,g) is then reduced to

dsz=51‘f[(dX’)z+ e (dX")? ],

which is flat. Hence the hypersurface x* = Const. (1<<a<p) would be totally geode-
sic, However, this situation has been excluded from our discussion. The proof of

our Theorem III is complete.
Question. In the case §+0, does there exist a Riemannian space which admits

p (p=3) orthogonal families of compact, totally umbilical but not geodesic, Eins-

teinian hypersurfaces?
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