On Modular Hilbert Algebras*

Li Bingren (李炳仁)

(Institute of Mathematics, Academia Sinica)

In this paper, we shall make some discussions on Tomita-Takesaki's fundamental theorem, and point out that a modular Hilbert algebra which fails to satisfy the condition(MI) has an extension of modular Hilbert algebra, and then we shall answer the question: "Is a #-subalgebra of a modular Hilbert algebra still a modular Hilbert algebra?" The partially affirmative result is that: "a #-two-sided ideal of a modular Hilbert algebra is still a modular Hilbert algebra."

§1 Tomita—Takesaki's fundamental theorem

Theorem([1]) For every generalized Hilbert algebra , there exists a modular Hilbert algebra B which is equivalent to .

In this section, we shall make some discussions on such R.

let $(\mathcal{S}, \#, \langle, \rangle)$ be a complete generalized Hilbert algebra, \mathcal{H} be the completion of $(\mathcal{S}, \langle, \rangle)$, Δ be its modular operator. A #-subalgebra \mathfrak{B} of \mathcal{S} is called a modular Hilbert algebra equivalent to \mathcal{S} , if $\mathfrak{B}'' = \mathcal{S}$, $\Delta'' \mathfrak{B} \subset \mathfrak{B} (\forall a \in C)$. and $(\mathcal{B}, \#, \Delta(a) = \Delta^a, \langle, \rangle)$ is a modular Hilbert algebra.

Lemma 1.1 let $\mathcal{B} = \bigcap \{ \mathcal{B}(\Delta^a) | a \in \mathbb{C} \}$, then Δ^a is the closure of $\Delta^a | \mathcal{S}' \cap \mathcal{B}$, $\forall a \in \mathbb{C}$.

Proof From[1], for every $a \in \mathbb{C}$, Δ^a is the closure of

$$\Delta^{\alpha} | \{ f(\log \Delta) \xi | \xi \in \mathcal{S}, f \in \mathcal{E} \}.$$

But $f(\log \Delta) \xi \in \mathcal{J} \cap \mathcal{B}$, $\forall \xi \in \mathcal{J}$, $f \in \mathcal{G}$, hence Δ^a is the closure of $\Delta^a \mid \mathcal{J} \cap \mathcal{B}$.

Because Δ^{-1} is the modular operator of \mathcal{S}' , so we have symmetrically that Δ^a is the closure of $\Delta^a \mid \mathcal{S}' \cap \mathcal{B}$, $\forall a \in \mathbb{C}$. Q. E. D.

Proposition 1.2 Let

$$\mathcal{U} = \{\xi \mid \xi \in \mathcal{S} \cap \mathcal{Z}, \ \Delta^{\alpha} \xi \in \mathcal{S}, \ \forall \alpha \in \mathcal{C}\},$$

then $\mathcal U$ is the maximum modular Hilbert algebra equivalent to $\mathscr S.^{(*)}$

^{*} Received Mar. 6, 1982.

^(*) Another Proof see[2].

Proof If $\xi, \eta \in \mathcal{U}$, $\xi \in \mathscr{S}' \cap \mathscr{D}$, then

$$\begin{split} \langle \xi \eta, \Delta^{-it} \zeta \rangle &= \langle \Delta^{it} (\xi \eta), \zeta \rangle = \langle \Delta^{it} \Pi (\xi), \Delta^{-it} \Delta^{it} \eta, \zeta \rangle \\ &= \langle \Delta^{it} \eta, \Pi ((\Delta^{it} \xi)^*) \zeta \rangle = \langle \Delta^{it} \eta, \Pi' (\zeta), \Delta^{it} \xi^* \rangle, \ \forall t \in \mathbb{R} \end{split}$$

On other hand, $\alpha \rightarrow \langle \xi \eta, \Delta^{\overline{\alpha}} \xi \rangle$ and $\alpha \rightarrow \langle \Delta^{\alpha} \eta, \Pi'(\xi) \Delta^{-\overline{\alpha}} \xi^* \rangle$ are analytic on \mathbb{C} , so for every $\alpha \in \mathbb{C}$

$$\langle \xi \eta, \Delta^{\overline{a}} \xi \rangle = \langle \Delta^{a} \eta, \Pi'(\xi) \Delta^{-\overline{a}} \xi^{*} \rangle = \langle \Delta^{a} \eta, \Pi((\Delta^{a} \xi)^{*}) \xi \rangle = \langle (\Delta^{a} \xi) (\Delta^{a} \eta), \xi \rangle$$

Now by lemma 1.1, we have

$$\Delta^{\alpha}(\xi\eta) = (\Delta^{\alpha}\xi)(\Delta^{\alpha}\eta), \quad \forall \xi, \eta \in \mathcal{U}, \alpha \in \mathbb{C}$$

However, from [1], $(1 + \Delta^t)\{f(\log \Delta)\xi | \xi \in \mathcal{J}, f \in \mathcal{G}\}\$ is dense in $\mathcal{H}(\forall t \in \mathbb{R})$, hence $(1 + \Delta^t)\mathcal{U}$ is dense in $\mathcal{H}(\forall t \in \mathbb{R})$. Therefore \mathcal{U} is the maximum modular Hilbert algebra equivalent to \mathcal{J} . Q. E. D.

Proposition 1.3 let \mathcal{U}_a be the #-subalgebra generated by

$$\left\{\xi_{r} = \sqrt{\frac{r}{\pi}} \int_{-\infty}^{+\infty} e^{-rt^{*}} \Delta^{it} \xi dt \mid \xi \in \mathscr{Y}, r > 0\right\}$$

Then \mathcal{U}_a is a modular Hilbert algebra equivalent to \mathscr{L} .

Proof From[3], ξ_r is an analytic vector respect to $\{\Delta^{ii}\}$, so $\xi_r \in \mathcal{D}$, $\forall \xi \in \mathcal{S}$, r > 0. On the other hand

$$\Pi'(\eta)\xi_{r}(\alpha) = \sqrt{\frac{r}{\pi}}\int_{-\infty}^{+\infty} e^{-r(t-\alpha)^{3}}\Pi'(\eta)\Delta^{it}\xi dt = \left(\sqrt{\frac{r}{\pi}}\int_{-\infty}^{+\infty} e^{-r(t-\alpha)^{3}}\Delta^{it}\Pi(\xi)\Delta^{-it}dt\right)\eta, \quad \forall \eta \in \mathscr{S}'$$

where

$$\xi_r(\alpha) = \sqrt{\frac{r}{\pi}} \int_{-\pi}^{+\infty} e^{-r(t-\alpha)^2} \Delta^{it} \xi dt = \Delta^{i\alpha} \xi, \quad \forall \alpha \in \mathbb{C}$$

so $\xi_r(\alpha)$ is a left bounded element. Furthermore $\xi_r(\alpha) \in \mathcal{B}(\Delta^{\frac{1}{2}})$, so $\xi_r(\alpha) \in \mathcal{S}$. Therefore $\mathcal{U}_{\alpha} \subset \mathcal{U}$.

Now it is sufficient to prove that $(1 + \Delta^t) \mathcal{U}_a$ is dense in \mathcal{H} , $\forall t \in \mathbb{R}$. For every $\xi \in \mathfrak{D}(\Delta^t)$ and $\delta > 0$, by [1], there are $f \in \mathfrak{G}$ and $\eta \in \mathfrak{S}$ such that

$$\|(1+\Delta')(f(\log\Delta)\eta-\xi)\|<\delta$$

The operator $(1 + \Delta') f(\log \Delta)$ is bounded and $\|\eta_r - \eta\| \rightarrow 0 (r \rightarrow + \infty)$, so

$$\|(1+\Delta^t)(f(\log\Delta)\eta,-\xi)\| = \|(1+\Delta^t)[(f(\log\Delta)\eta),-\xi]\| < \delta$$

when r is sufficiently large. This completes the proof.

Proposition 1.4 Let

$$\mathcal{U}_{0} = \left\{ \xi \middle| \begin{cases} \xi \in \mathcal{U}, \text{ and } \alpha \to \Pi(\Delta^{n} \xi) \\ \text{is analytic from } C \text{ to } (B(\mathcal{H}), \| \|) \end{cases} \right\}$$

Then \mathcal{U}_0 is a modular Hilbert algebra equivalent to \mathscr{S} .

Proof Let $\xi, \eta \in \mathcal{U}_0, \zeta \in \mathcal{S}$,

$$\Pi(\Delta^{\alpha}(\xi\eta))\xi = \Delta^{\alpha}(\xi\eta)\xi = (\Delta^{\alpha}\xi)(\Delta^{\alpha}\eta)\xi = \Pi(\Delta^{\alpha}\xi)\Pi(\Delta^{\alpha}\eta)\xi,$$

so that $\Pi(\Delta^{\alpha}(\xi\eta)) = \Pi(\Delta^{\alpha}\xi)\Pi(\Delta^{\alpha}\eta)$ is analytic, i.e., $\xi\eta \in \mathcal{U}_0$. On the other hand, if $\xi \in \mathcal{U}_0$, $\Pi(\Delta^{\alpha}\xi^*) = (\Pi(\Delta^{-\alpha}\xi))^*$, so that $\xi^* \in \mathcal{U}_0$. Hence \mathcal{U}_0 is a \sharp -subalgebra

of U.

Now if $\xi \in \mathcal{A}$, by Proposition 1.3, $\xi_r \in \mathcal{U}$. Moreover

$$\Delta^{a}\xi_{r}=\sqrt{\frac{r}{\pi}}\int_{-\infty}^{+\infty}e^{-r(t+ia)^{a}}\Delta^{it}\xi dt,$$

$$\Pi(\Delta^{a}\xi_{r}) = \sqrt{\frac{r}{\pi}} \int_{-\infty}^{+\infty} e^{-r(t+i\alpha)^{2}} \Delta^{it} \Pi(\xi) \Delta^{-it} dt,$$

so that $\xi_r \in \mathcal{U}_0$, i.e. $\mathcal{U}_a \subset \mathcal{U}_0$. This completes the proof.

Proposition 1.5

$$\mathcal{U}^2 = \{\sum_i \xi_i \eta_i \mid \xi_i, \eta_i \in \mathcal{U}\}$$

is also a modular Hilbert algebra equivalent to S.

Proof It is sufficient to prove that Δ^s is the closure of $\Delta^s \mid \mathcal{U}^2$, $\forall s \in \mathbb{R}$.

Fixed $s \in \mathbb{R}$, $\xi \in \mathfrak{D}(\Delta^s)$ and $\delta > 0$. Because Δ^s is the closure of $\Delta^s \mid \mathcal{U}$, we have $\xi \in \mathcal{U}$ such that

$$\|\zeta - \xi\| < \delta$$
, $\|\Delta' \zeta - \Delta' \xi\| < \delta$

For arbitrary $\eta \in \mathcal{A}$, suppose

$$\tilde{\eta} = \frac{1}{\sqrt{\pi}} \int_{-\pi}^{+\infty} e^{-it} \Delta^{it} \eta dt \in \mathcal{U},$$

then

$$\Delta^{s}\tilde{\eta} = \frac{1}{\sqrt{\pi}} \int_{0}^{+\infty} e^{-(t+is)s} \Delta^{it} \eta dt,$$

$$\Pi(\tilde{\eta}) = \frac{1}{\sqrt{\pi}} \int_{-\infty}^{+\infty} e^{-t^2} \Delta^{it} \Pi(\eta) \Delta^{-it} dt, \Pi(\Delta^s \tilde{\eta}) = \frac{1}{\sqrt{\pi}} \int_{-\infty}^{+\infty} e^{-(t+is)^n} \Delta^{it} \Pi(\eta) \Delta^{-it} dt,$$

and

$$\|\Pi(\tilde{\eta})\zeta - \xi\| \leq \frac{1}{\sqrt{\pi}} \int_{0}^{+\infty} e^{-t^{2}} \|\Pi(\eta)\Delta^{i}\zeta - \Delta^{i}\xi\| dt,$$

$$\|\Pi(\Delta^{s}\tilde{\eta})\Delta^{s}\xi - \Delta^{s}\xi\| \leq \frac{e^{s^{1}}}{\sqrt{\pi}} \int_{-\infty}^{+\infty} e^{-t^{1}} \|\Pi(\eta)\Delta^{i}\Delta^{s}\eta - \Delta^{i}\Delta^{s}\xi\|dt.$$

Suppose $\{t_k\}$ be a dense subset of \mathbb{R} , because $I \in \{\Pi(\mathcal{S})\}''$, hence for every n, there exists a $\eta_n \in \mathcal{S}$ such that

$$\|\Pi(\eta_n)\| \leq 1, \quad \|(\Pi(\eta_n) - I)\Delta^{i + n} \xi'\| \leq \frac{1}{n}, \quad 1 \leq k \leq n,$$

where $\xi' = \xi$ or $\Delta^s \xi$. It is not difficult to prove that

$$\|(\Pi(\eta_n)-I)\Delta^{i}\zeta'\| \xrightarrow{n} 0, \quad \forall t \in \mathbb{R},$$

By the theorem of dominated convergence, we have

$$\frac{1}{\sqrt{\pi}}\int_{-\pi}^{+\pi}e^{-t^{\alpha}}\|\Pi(\eta_{n})\Delta^{i}{}^{t}\zeta-\Delta^{i}{}^{t}\xi\|dt\stackrel{n}{\longrightarrow}\frac{1}{\sqrt{\pi}}\int_{-\pi}^{+\pi}e^{-t^{\alpha}}\|\Delta^{i}{}^{t}\zeta-\Delta^{i}{}^{t}\xi\|dt=\|\zeta-\xi\|,$$

$$\frac{e^{it}}{\sqrt{\pi}} \int_{-\pi}^{\pi} e^{-it} \|\Pi(\eta_n) \Delta^{it} \Delta^s \xi - \Delta^{it} \Delta^s \xi \| dt$$

$$\xrightarrow{\eta} \frac{e^{it}}{\sqrt{\pi}} \int_{-\pi}^{\pi} e^{-it} |\Delta^{it} \Delta^s \xi - \Delta^{it} \Delta^s \xi \| dt = \|\Delta^s \xi - \Delta^s \xi \| e^{it},$$

when n is sufficiently large, let $\eta = \tilde{\eta}_n \in \mathcal{U}$, then

$$|\Pi(\eta)\xi - \xi| < \delta$$
, $|\Pi(\Delta'\eta)\Delta'\xi - \Delta'\xi| < e^{i\eta}\delta$.

But $\Pi(\eta)\zeta = \eta \xi \in \mathcal{U}^2$, $\Pi(\Delta^s \eta)\Delta^s \zeta = \Delta^s(\eta \xi)$, therefore Δ^s is the closure of $\Delta^s | \mathcal{U}^2$. Q. E. D.

Lemma 1.6 $x \in B(\mathcal{H})$ is called analytic about $\{\Delta^{ii}\}$, if there is an analytic map x(a) from C to $(B(\mathcal{H}), \|\cdot\|)$ such that

$$x(t) = \Delta^{it} x \Delta^{-it}, \qquad \forall t \in \mathbb{R}.$$

Then $x \mathcal{D}(\Delta^a) \subset \mathcal{D}(\Delta^a)$, and $x(a) \supset \Delta^{ia} x \Delta^{-ia}$, $\forall a \in \mathbb{C}$.

Proof If s>0 and $\xi\in\mathcal{D}(\Delta^i)$, then $\Delta^{ii}\xi(t\in\mathbb{R})$ can be extended to become a function $\xi(z)$ which is boundedly continuous in $-s\leqslant \mathrm{Im}z\leqslant 0$ and analytic in $-s\leqslant \mathrm{Im}z\leqslant 0$, so is $\Delta^{ii}x\xi=\Delta^{ii}x\Delta^{-ii}\cdot\Delta^{ii}\xi$. Hence $x\xi\in\mathcal{D}(\Delta^i)$. Similarly $x\mathcal{D}(\Delta^i)\subset\mathcal{D}(\Delta^i)$ when $s\leqslant 0$. Therefore $x\mathcal{D}(\Delta^a)\subset\mathcal{D}(\Delta^a)$, $\forall a\in\mathbb{C}$.

If $\xi, \eta \in \mathcal{D}$, then

$$\langle \Delta^{i\alpha} X \Delta^{-i\alpha} \xi, \eta \rangle = \langle X (\Delta^{-i\alpha} \xi), \Delta^{-i\overline{\alpha}} \eta \rangle$$

is analytic on C, therefore

$$\langle x(\alpha)\xi,\eta\rangle=\langle \Delta^{i\alpha}x\Delta^{-i\alpha}\xi,\eta\rangle$$

 $\forall \alpha \in \mathbb{C}$

and

$$x(\alpha) \mid \mathcal{D} = \Delta^{i\alpha} x \Delta^{-i\alpha} \mid \mathcal{D}$$

 $\forall \alpha \in \mathbb{C}$

Because $\mathcal{D}(\Delta^{i\alpha}x\Delta^{-i\alpha}) = \mathcal{D}(\Delta^{-i\alpha})$ and $\Delta^{-i\alpha}$ is the closure of $\Delta^{-i\alpha}|\mathcal{D}$, so it is not difficult to prove that $x(\alpha) = \Delta^{i\alpha}x\Delta^{-i\alpha}$, $\forall \alpha \in \mathcal{C}$. Q. E. D.

Lemma 1.7 Let $\xi \in \mathcal{S} \cap \mathcal{D}$ and $\alpha \in \mathcal{C}$, then $\Delta^{\alpha} \xi \in \mathcal{S}$ if and only if there is an operator $A \in B(\mathcal{H})$ such that

$$A = \Delta^{\alpha} \Pi(\xi) \Delta^{-\alpha}$$
.

However, in this case, $A = \Pi(\Delta^{\alpha} \xi)$.

Proof Let $\Delta^{\alpha}\xi$ and $\eta\in\mathcal{U}_{\alpha}(\mathscr{S}')$, by lemma 1.6,

$$\Pi\left(\Delta^{\alpha}\xi\right)\eta = \Delta^{\alpha}\Delta^{-\alpha}\Pi'(\eta)\Delta^{\alpha}\xi = \Delta^{\alpha}\Pi'(\Delta^{-\alpha}\eta)\xi = \Delta^{\alpha}\Pi(\xi)\Delta^{-\alpha}\eta$$

Hence

$$\Pi(\Delta^a \xi) \supset \Delta^a \Pi(\xi) \Delta^{-a} | \mathcal{U}_0(\mathscr{S}')$$

But by Proposition 1.4, $\Delta^{-\alpha}$ is the closure of $\Delta^{-\alpha}|\mathcal{U}_0(\mathcal{S}')$, so that $\Pi(\Delta^n\xi)$ $\supset \Delta^n\Pi(\xi)\Delta^{-\alpha}$.

Now let $A \in B(\mathcal{H})$ and $A \supset \Delta^{\alpha} \Pi(\xi) \Delta^{-\alpha}$, $\eta \in \mathcal{U}_{\alpha}(\mathcal{S}')$, then

$$\Pi\left(\Delta^{\alpha}\xi\right)\eta = \Pi'\left(\eta\right)\Delta^{\alpha}\xi = \Delta^{\alpha}\Pi'\left(\Delta^{-\alpha}\eta\right)\xi = \Delta^{\alpha}\Pi\left(\xi\right)\Delta^{-\alpha}\eta = A_{\eta}$$

when $\eta \in \mathcal{S}'$, take $\eta_n \in \mathcal{U}_0(\mathcal{S}')$ such that $\|\eta_n - \eta\| \xrightarrow{n} 0$, then

$$\Pi(\Delta^a \xi) \eta_n = A_{n_0} \xrightarrow{n} A_n$$

, S#

But $\Pi(\Delta^{\alpha}\xi)$ is a closed operator, hence

$$\|\Pi(\Delta^{\alpha}\xi)\eta\| = \|A_{\eta}\| \leqslant \|A\| \|\eta\| \qquad \forall \eta \in \mathscr{S}'$$

i. e., $\Delta''\xi$ is a left bounded element. Because $\Delta''\xi\in \mathcal{B}(\Delta^{\frac{1}{2}})$ also, therefore $\Delta''\xi\in \mathcal{S}''$ = \mathcal{S} . Q. E. D.

Proposition 1.8

$$\mathcal{U}_0 = \{ \xi | \xi \in \mathcal{U} \cdot \Pi(\xi) \text{ is analytic about } \{\Delta^{it}\} \}$$

$$= \{ \xi | \xi \in \mathcal{S} \cap \mathcal{B}, \Pi(\xi) \text{ is analytic about } \{\Delta^{it}\} \}$$
there is a mapping $\xi(\alpha)$. $C \rightarrow \mathcal{S}$ such that
$$= \{ \xi | \xi(t) = \Delta^{it} \xi, \forall t \in \mathbb{R} \text{ and } \alpha \rightarrow \Pi(\xi(\alpha)) \text{ is analytic} \}$$
from C to $(B(\mathcal{H}), \| \cdot \|)$

Proof let $\xi \in \mathscr{J} \cap \mathscr{D}$ and $\Pi(\xi)$ is analytic about $\{\Delta^{ii}\}$, by lemma 1.6, $\Pi(\xi)(\alpha) \cap \Delta^{i\alpha}\Pi(\xi)\Delta^{-i\alpha}$, further by lemma 1.7, $\Delta^{\alpha}\xi \in \mathscr{J}$, $\forall \alpha \in \mathbb{C}$, so that $\xi \in \mathscr{U}$.

Now if $\xi \in \mathcal{U}$, and $\Pi(\xi)$ is analytic about $\{\Delta^{i}\}$, by lemma 1.6 and 1.7, $\Pi(\xi)$ (a) $= \Pi(\Delta^a \xi)$. $\forall \alpha \in \mathbb{C}$, so that $\alpha \to \Pi(\Delta^a \xi)$ is analytic from \mathbb{C} to $(B(\mathcal{H}), \|\cdot\|)$, i.e., $\xi \in \mathcal{U}_0$.

Now let the function $\alpha \to \xi(\alpha)$. $\mathbb{C} \to \mathbb{S}$ such that $\xi(t) = \Delta^{it} \xi$, $\forall t \in \mathbb{R}$, and $\alpha \to \Pi(\xi(\alpha))$ is analytic from \mathbb{C} to $(B(\mathcal{H}), \|\cdot\|)$, we must prove $\xi \in \mathcal{D}$. Suppose $\alpha \in \mathbb{C}$, and $\eta, \xi \in \mathcal{U}_{\mathbb{C}}(\mathbb{S}')$, then

$$\langle \Pi(\xi(\alpha)) \eta, \zeta \rangle = \langle \Pi'(\eta) \xi(\alpha), \zeta \rangle = \langle \xi(\alpha), \eta^b \zeta \rangle$$

By lemma 1.6, $\Pi(\xi(\alpha)) \supset \Delta^{i\alpha}\Pi(\xi)\Delta^{-i\alpha}$, so that

$$\langle \Pi(\xi(\alpha))\eta, \xi \rangle = \langle \Delta^{i\alpha}\Pi(\xi)\Delta^{-i\alpha}\eta, \xi \rangle = \langle \Pi'(\Delta^{-i\alpha}\eta)\xi, \Delta^{-i\overline{\alpha}}\xi \rangle = \langle \xi, \Delta^{-i\overline{\alpha}}(\eta^{i}\xi) \rangle$$

By Proposition 1.5, Δ^{-ia} is the closure of $\Delta^{-ia} | \mathcal{U}_0(\mathcal{S}')^2$, therefore $\xi \in \mathcal{D}(\Delta^{ia})$ and $\xi(a) = \Delta^{ia}\xi$, $\forall a \in \mathbb{C}$, Q. E. D.

§2 The modular Hilbert algebras which fail to satisfy the condition(W)

Let $(\mathcal{U}, \sharp, \Delta(a), <,>)$ satisfy the conditions([)—(M) of modular Hilbert algebras, but except the condition(M)([1]), \mathcal{H} be the completion of $(\mathcal{U}, <,>)$.

By the conditions (V) and (VI), $\{\Delta(it)|_{t\in\mathbb{R}}\}$ can be uniquely extended to become a strongly continuous group of unitary operators $\{U(t)|_{t\in\mathbb{R}}\}$ in \mathcal{H} . Then by Stone's theorem, there is an unique positive self-adjoint operator $\tilde{\Delta}$ in \mathcal{H} such that

$$U(t) = \tilde{\Delta}^{it}, \quad \forall t \in \mathbb{R}$$

From the condition (VII), we have

$$\mathcal{U} \subseteq \widetilde{\mathcal{B}} = \bigcap_{\alpha \in \mathbf{C}} \mathcal{B}(\widetilde{\Delta}^{\alpha}), \qquad \widetilde{\Delta}^{\alpha} \supset \Delta(\alpha) \qquad \forall \alpha \in \mathbf{C}$$

Suppose $\tilde{J}\xi = \Delta \left(\frac{1}{2}\right)\xi^* = \Delta^{\frac{1}{2}}\xi^*$ $\forall \xi \in \mathcal{U}$

Then \tilde{j} can be uniquely extended to a bounded conjugate linear operator in \mathcal{H} (still denoted by \tilde{j}) such that

$$\tilde{J}^2 = I, \quad \langle \tilde{J}\xi, \tilde{J}\eta \rangle = \langle \eta, \xi \rangle, \quad \forall \xi, \eta \in \mathcal{H}$$

Because

$$\tilde{J}\tilde{\Delta}^{\frac{1}{2}}\xi=\xi^*, \quad \forall \xi\in\mathcal{U}$$

hence the operator \sharp (with domain \mathcal{U}) has a closed extension in \mathcal{H} . Therefore (\mathcal{U} , \sharp , <, >) is also a generalized Hilbert algebra, let its unitary involution and modular operator be J and Δ .

Lemma 2.1 $J = \tilde{J}$, if and only if $\Delta = \tilde{\Delta}$.

Proof Let S be the closure of the operator # in \mathcal{H} .

If $J = \tilde{J}$, by $\tilde{J}\tilde{\Delta}^{\frac{1}{2}} \supset S = J\Delta^{\frac{1}{2}}$, so that $\tilde{\Delta}^{\frac{1}{2}} \supset \Delta^{\frac{1}{2}}$. But $\tilde{\Delta}^{\frac{1}{2}}$ and $\Delta^{\frac{1}{2}}$ are all self-adjoint, hence $\Delta = \tilde{\Delta}$. Conversely let $\Delta = \tilde{\Delta}$, then $\mathcal{B}(S) = \mathcal{B}(\tilde{\Delta}^{\frac{1}{2}}) = \mathcal{B}(\Delta^{\frac{1}{2}})$. By $\tilde{J}\tilde{\Delta}^{\frac{1}{2}} \supset S$, so that $S = \tilde{J}\tilde{\Delta}^{\frac{1}{2}}$. Now by the uniqueness of polar decomposition, $J = \tilde{J}$. Q. E. D.

Lemma 2.2 Let

$$K = \{\xi | \xi = \xi^* \in \mathcal{U}\}$$

Then $\{\Delta^{it}|_{t\in\mathbb{R}}\}$ is the unique strongly continuous group of unitary operators in \mathcal{H} such that $\Delta^{it}K\subset K(\forall t\in\mathbb{R})$ and for arbitrary $\xi,\eta\in K$, there is a (%. M. S.) function f(z) which is boundedly continuous in $0\leqslant \mathrm{Im}z\leqslant 1$ and analytic in $0\leqslant \mathrm{Im}z\leqslant 1$ and satisfies

$$f(t) = \langle \eta, \Delta^{it} \xi \rangle = f(t+i), \quad \forall t \in \mathbb{R}$$

Proof Because S is the closure of $S|\mathcal{U}$ and $\Delta^{i}\mathcal{U}'' = \mathcal{U}''$, so that $\Delta^{i}\mathcal{K} \subset K$, $\forall t \in \mathbb{R}$.

Let $\xi, \eta \in K \subset \mathcal{B}(S) = \mathcal{B}(\Delta^{\frac{1}{2}})$, suppose

$$\xi_n = \sqrt{\frac{n}{\pi}} \int_{-\pi}^{+\pi} e^{-nz} \Delta^{iz} \xi dt, \qquad f_n(z) = \langle \eta, \Delta^{ie} \xi_n \rangle$$

then $\|\xi_n - \xi\| \xrightarrow{n} 0$, $f_n(z)$ is analytic on \mathbb{C} and bounded in $0 \leq \text{Im} z \leq 1$ (because $\xi_n \in \mathcal{D}$), and

 $f_n(t+i) = \langle \eta, \Delta^{i} \Delta \xi_n \rangle = \langle \Delta^{\frac{1}{2}} \eta, \Delta^{i} \Delta^{\frac{1}{2}} \xi_n \rangle = \langle \Delta^{i} S \xi_n, S \eta \rangle = \langle \Delta^{i} \xi_n, \eta \rangle = \overline{f_n(t)}, \quad \forall t \in \mathbb{R}$ Now by the principle of Maximum norm, $f_n(z) \xrightarrow{n} f(z)$ uniformly in $0 \leq \text{Im} z \leq 1$, and f(z) is the K. M. S. function of ξ , η .

The uniqueness, see [3]. Q. E. D.

Lemma 2.3 $\Delta = \tilde{\Delta}$, in particular, $\left(1 + \Delta \left(\frac{1}{2}\right)\right)\mathcal{U}$ is dense in \mathcal{H} .

Proof By Lemma 2.2, it is sufficient to prove that $U(t)K \subset K(\forall t \in \mathbb{R})$ and $\{U(t)\}$ satisfies the K. M. S. condition about K.

Let $\xi = \xi^* \in \mathcal{U}$, then

$$(U(t)\xi)^* = (\Delta(it)\xi)^* = \Delta(-\overline{it})\xi^* = \Delta(it)\xi = U(t)\xi \in \mathcal{U}$$

so that $U(t)K \subset K$, $\forall t \in \mathbb{R}$.

Let $\xi = \xi^*$, $\eta = \eta^* \in \mathcal{U}$, then

$$f(z) = \langle \eta, \tilde{\Delta}^{i\overline{z}} \xi \rangle = \langle \eta, \Delta(i\overline{z}) \xi \rangle = \langle \Delta(-iz) \eta, \xi \rangle$$

is analytic on \mathbb{C} , and bounded in $0 \leq \text{Im} z \leq 1$ (because $\xi \in \bigcap_{a \in \mathbb{C}} \mathcal{D}(\tilde{\Delta}^a)$), and

$$f(t+i) = \langle \Delta(-it+1)\eta, \xi \rangle = \langle \Delta(1)\eta, \Delta(it)\xi \rangle$$

$$= \langle (\Delta(it)\xi)^*, \eta^* \rangle = \langle \Delta(it)\xi, \eta \rangle = \langle U(t)\xi, \eta \rangle = \overline{f(t)}, \quad \forall t \in \mathbb{R}$$

so that f(z) is the K. M. S. function of ξ , η .

Now if $\xi, \eta \in K$, take $\xi_n = \xi_n^*, \eta_n = \eta_n^* \in \mathcal{U}$, such that $\|\xi_n - \xi\| \xrightarrow{n} 0, \|\eta_n - \eta\| \xrightarrow{n} 0$. By $f_n(z) = \langle \eta_n, \Delta(i\bar{z})\xi_n \rangle$ is the K. M. S. function of ξ_n, η_n , and the principle of Maximum norm, we have

$$|f_n(z) - f_m(z)| \leq \sup_{t \in \mathbb{R}} |f_n(t) - f_m(t)| \leq ||\xi_n - \xi_m|| ||\eta_m|| + ||\eta_n - \eta_m|| ||\xi_n|| \xrightarrow{n,m} 0$$

uniformly for $0 \le \text{Im} z \le 1$. Therefore $f_n(z) \xrightarrow{n} f(z)$ and f(z) is the K.M.S. function of ξ, η, Q . E. D.

Proposition 2.4 $(\mathcal{U}, \sharp, \Delta(\alpha), <, >)$ can be extended to become a modular Hilbert algebra in \mathcal{H} .

Proof By Lemma 2.1,2.3, $J = \tilde{J}$, $\Delta = \tilde{\Delta}$, then the maximum modular Hilbert algebra equivalent to \mathcal{U}'' is an extension of \mathcal{U} .Q. E. D.

§3 #-two-sided ideals of a modular Hilbert algebra

Let $(\mathcal{U}, \sharp, \Delta(a), <, >)$ be a modular Hilbert algebra, \mathcal{H} be the completion of $(\mathcal{U}, <, >)$, Δ be its modular operator.

Lemma 3.1 Let \mathscr{S} be a #-subalgebra of \mathscr{U} , $\Delta(a) \mathscr{S} \subset \mathscr{S}$, $\forall a \in \mathbb{C}$, and K be the closed subspace of \mathscr{H} generated by \mathscr{S} . Then $(\mathscr{S}, \#, \Delta(a), <, >)$ is also a modular Hilbert algebra, if and only if, for every $s \in \mathbb{R}$ and $\xi \in K \cap \mathscr{D}(\Delta')$, there exists a sequence $\{\xi_n\} \subset \mathscr{S}$ such that

$$\|\xi_n - \xi\| \xrightarrow{n} 0, \|\Delta(s)\xi_n - \Delta^s \xi\| \xrightarrow{n} 0$$

Proof According to §2, \mathscr{L} is also a generalized Hilbert algebra in K, let $\Delta_{\mathscr{L}}$ be its modular operator.

Because $\Delta(it)$ of \subset of, so that

$$\Delta^{it}|_{K} = (\Delta_{\mathcal{Q}})^{it}, \quad \forall t \in \mathbb{R}$$

Therefore $\Delta^a|_K = (\Delta_{\mathscr{A}})^a$, $\forall a \in \mathbb{C}$.

It is obvious that $(\mathcal{S}, \#, \Delta(a), <, >)$ is also a modular Hilbert algebra, if and only if, $(1 + \Delta_{\mathcal{S}}^s)$ \mathcal{S} is dense in K, $\forall s \in \mathbb{R}$, i.e., $\Delta_{\mathcal{S}}^s = \Delta^s|_K$ is the closure of $\Delta(s)|_{\mathcal{S}}$. This completes the proof.

Proposition 3.2 Let \mathscr{L} be a \sharp -two-sided ideal of \mathscr{U} , and $\Delta(\alpha)\mathscr{L} \subset \mathscr{L}$, $\forall \alpha \in \mathscr{C}$, then $(\mathscr{L}, \sharp, \Delta(\alpha), <,>)$ is also a modular Hilbert algebra.

Proof Let K be the closed subspace generated by \mathscr{J} . For any fixed $s \in \mathbb{R}$, $\xi \in K \cap \mathscr{D}(\Delta^s)$ and $\delta > 0$, there exists $\xi \in \mathscr{U}$ such that

$$\|\xi - \xi\| < \delta$$
, $\|\Delta'\xi - \Delta'\xi\| < \delta$

For any $\eta \in \mathcal{J}$, suppose

$$\tilde{\eta} = \frac{1}{\sqrt{\pi}} \int_{-\infty}^{+\infty} e^{-t^2} \Delta^{it} \eta dt$$

According to the proof of Proposition 1.5, we have

$$\|\Pi(\tilde{\eta})\zeta - \xi\| \leq \frac{1}{\sqrt{\pi}} \int_{-\infty}^{+\infty} e^{-t^{\mathbf{a}}} \|\Pi(\eta)\Delta^{it}\xi - \Delta^{it}\xi\| dt$$

$$\|\Pi(\Delta^s\tilde{\eta})\Delta^s\zeta - \Delta^s\xi\| \leq \frac{e^{s^2}}{\sqrt{\pi}} \int_{-\infty}^{+\infty} e^{-t^2} \|\Pi(\eta)\Delta^{i}\Delta^s\zeta - \Delta^{i}\Delta^s\xi\| dt$$

Suppose $\{t_k\}$ be a dense subset of \mathbb{R} , Q be the orthogonal projection from \mathcal{H} onto $\llbracket \Pi(\mathcal{J})\mathcal{H} \rrbracket$, then $Q \in \Pi(\mathcal{J})^n$. By the density theorem, for every n, there exists $\eta_n \in \mathcal{J}$ such that

$$\|\Pi(\eta_n)\| \leq 1, \|[\Pi(\eta_n) - Q]\Delta^{its}\zeta'\| < \frac{1}{n}, 1 \leq K \leq n$$

where $\zeta' = \zeta$ or $\Delta' \zeta$, Then

$$\|[\Pi(\eta_n) - Q]\Delta^{it}\zeta'\| \xrightarrow{n} 0, \quad \forall t \in \mathbb{R}$$

Hence we have

$$\frac{1}{\sqrt{\pi}} \int_{-\infty}^{+\infty} e^{-t^{2}} \|\Pi(\eta_{n}) \Delta^{i} \xi - \Delta^{i} \xi \| dt \xrightarrow{n} \frac{1}{\sqrt{\pi}} \int_{-\infty}^{+\infty} e^{-t^{2}} \|Q \Delta^{i} \xi - \Delta^{i} \xi \| dt$$

$$\frac{e^{s^{2}}}{\sqrt{\pi}} \int_{-\infty}^{+\infty} e^{-t^{2}} \|\Pi(\eta_{n}) \Delta^{i} \Delta^{s} \xi - \Delta^{i} \Delta^{s} \xi \| dt \xrightarrow{n} \frac{e^{s^{2}}}{\sqrt{\pi}} \int_{-\infty}^{+\infty} e^{-t^{2}} \|Q \Delta^{i} \Delta^{s} \xi - \Delta^{i} \Delta^{s} \xi \| dt$$

When n is sufficiently large, let $\eta = \eta_n \in \mathcal{J}$, then

$$\|\Pi\left(\tilde{\eta}\right)\zeta - \xi\| \leqslant \delta + \frac{1}{\sqrt{\pi}} \int_{-\infty}^{\infty} e^{-t^2} \|Q\Delta^{it}\zeta - \Delta^{it}\xi\| dt$$

$$\|\Pi\left(\Delta^{s}\tilde{\eta}\right)\Delta^{s}\zeta - \Delta^{s}\xi\| \leqslant \delta + \frac{e^{s^{2}}}{\sqrt{\pi}} \int_{-\infty}^{+\infty} e^{-t^{2}} \|Q\Delta^{i} \Delta^{s}\zeta - \Delta^{i} \Delta^{s}\xi\| dt$$

🎜 is also a generalized Hilbert algebra, hence

$$K = \mathcal{J} = \mathcal{J}^2 = [\Pi(\mathcal{J})\mathcal{J}] \subseteq Q\mathcal{H}$$

Because $\Delta(\alpha)$ $\mathcal{J} \subset \mathcal{J}$, hence $Q \sim \Delta^{\alpha}$, $\forall \alpha \in \mathbb{C}$. By $\xi \in K$, therefore $Q\Delta^{i} \xi = \Delta^{i} \xi$, $Q\Delta^{i} \Delta^{i} \xi = \Delta^{i} \Delta^{i} \xi$, $\forall t \in \mathbb{R}$ and

$$\|\Pi(\tilde{\eta})\zeta - \xi\| < 2\delta, \|\Pi(\Delta^s \tilde{\eta})\Delta^s \zeta - \Delta^s \xi\| < (1 + e^{s^2})\delta$$

Because of

$$\tilde{\eta} = \frac{1}{\sqrt{\pi}} \int_{-\infty}^{+\infty} e^{-t^2} \Delta^{it} \eta dt = \lim_{\mathcal{P}} \sum_{j} (t_j - t_{j-1}) e^{-t^2} \Delta^{itj} \eta$$

and

$$\Delta^{t}\tilde{\eta} = \Delta^{t}\tilde{\eta} = \frac{1}{\sqrt{\pi}} \int_{-\infty}^{+\infty} e^{-t^{2}} \Delta^{t} \Delta^{t} \eta dt$$

so that we can take $\eta' = \sum_{j} (t_j - t_{j-1}) e^{-t_j^j} \Delta^{(i)} \eta \in \mathscr{L}$ such that

$$\|\Pi(\eta')\zeta - \Pi(\tilde{\eta})\zeta\| \leq \|\Pi'(\zeta)\| \|\eta' - \eta\| \leq \delta$$

$$\|\Pi(\Delta^{\epsilon}\tilde{\eta})\Delta^{\epsilon}\zeta - \Pi(\Delta^{\epsilon}\eta')\Delta^{\epsilon}\zeta\| \leq \|\Pi'(\Delta^{\epsilon}\zeta)\| \|\Delta^{\epsilon}\eta' - \Delta^{\epsilon}\tilde{\eta}\| \leq \delta$$

(because $\xi, \Delta'\xi \in \mathcal{U}$ and $\mathcal{U} \subseteq \mathcal{U}'' \cap \mathcal{U}'$). Therefore

$$\|\eta'\zeta-\xi\|<3\delta, \|\Delta^s(\eta'\zeta)-\Delta^s\xi\|<(2+e^{s^2})\delta$$

Now \mathcal{L} is a ideal of \mathcal{U} and $\eta' \in \mathcal{L}$, so that $\eta' \xi \in \mathcal{L}$. By lemma 3.1, we complete the proof.

Proposition 3.3 Let $(\mathcal{U}, \sharp, \Delta(\alpha), <, >)$ be a modular Hilbert algebra, $\mathcal{L}(\mathcal{U})$ be its left von Neumann algebra, Θ be a σ -closed two-sided ideal of $\mathcal{L}(\mathcal{U})$. If

$$\Pi(\mathcal{L}) = \Pi(\mathcal{U}) \cap \Theta$$

then \mathcal{J} is a #-two-sided ideal of \mathcal{U} , and $\Delta(a)$ $\mathcal{J} \subset \mathcal{J}$, $\forall a \in \mathbb{C}$.

Proof It is obvious that $\mathcal L$ is a \pi-two-sided ideal of $\mathcal U$.

Let $\Theta = \mathcal{L}(\mathcal{U})z$, where z is a central projection of $\mathcal{L}(\mathcal{U})$. If $\alpha \in \mathbb{C}$ and $\xi \in \mathcal{L}$, it is sufficient to prove that $\Pi(\Delta^{\alpha}\xi)z = \Pi(\Delta^{\alpha}\xi)$.

By [4],
$$\Delta^{\lambda}z \supset z\Delta^{\lambda}$$
, $\forall \lambda \in \mathbb{C}$. By lemma 1.6

$$\Pi(\Delta^{\alpha}\xi)\eta = \Delta^{\alpha}\Pi(\xi)\Delta^{-\alpha}\eta, \quad \forall \eta \in \mathcal{Z}(\Delta^{-\alpha})$$

Therefore

 $\Pi(\Delta^{a}\xi)z\eta = \Delta^{a}\Pi(\xi)\Delta^{-a}z\eta = \Delta^{a}\Pi(\xi)z\Delta^{-a}\eta = \Delta^{a}\Pi(\xi)\Delta^{-a}\eta = \Pi(\Delta^{a}\xi)\eta \qquad \forall \eta \in \mathcal{D}(\Delta^{-a}),$ further $\Pi(\Delta^{a}\xi)z = \Pi(\Delta^{a}\xi)$. Q. E. D.

References

- [1] Takesaki, M., Tomita's theory of modular Hilbert algebras and its applications, Lecture Notes in Math., 128, Springer-Verlag, Berlin, Heidelberg, New york, 1970.
- [2] Combes, F., Poids associé a une algèbre hilbertienne à gauche, Compositio Math., 23 (1971), 49-77.
- [3] Rieffel, M. A. and Van Daele, A., A bounded operator approach to Tomita-Takesaki theory, Pacific J. Math., 69(1977), 187-221.
- [4] Pedersen, G. K. and Takesaki, M., The Radon-Nikodym theorem for von Neumann algebras, Acta Math., 130(1973), 53-87.