第3卷 第3期 1983年7月

Stability of Solution of a Scalar Differential Equation*

Kang De

(Southwestern Jiaotong University)

Lyapunov's second method in fact is that which may be described as follows: applying the comparison principle to the V-function, we may render the stability of the solution of a vector differential equation to that of the scalar differential equation

$$\frac{du}{dt} = \omega(t, u), \ \omega(t, 0) = 0, \ 0 \leqslant u \leqslant \rho(t), \ t \in \mathcal{J}$$
 (1)

[cf. C. Corduneanu, 1960]. Unfortunately, the stability of the solutions of scalar differential equations had not been well-discussed. In literatures, ρ is assumed to be a positive constant and $\omega(t,u)$ is nondecreasing for a fixed t. In this paper the author dropps these two limitations and obtains several sufficient conditions for the stability and unstability of the solutions.

Consider the d. e. (1). Let $\omega \in C[D, R_+]$, where $D = \{(t, u) \in R^2 : 0 \le u \le \rho(t), t \in \mathcal{F}\}$, $\rho(t)$ is continuous on \mathcal{F} . Assumed that the solutions of d. e. (1) is unique and continuous with respect to initial values.

Theorem 1 We consider the scalar d. e.,

$$\frac{du}{dt} = F(t, u)u + f(t, u). \tag{2}$$

Suppose that: 1) $F, f \in C[D, R_+], f(t, 0) = 0$ and $\int_{t_0}^t F(\tau, u(\tau)) d\tau \leqslant \int_{t_0}^t F(\tau, \rho(\tau)) d\tau$, $\int_{t_0}^t f(\tau, u(\tau)) d\tau \leqslant \int_{t_0}^t f(\tau, \rho(\tau)) d\tau$, for $0 \leqslant u \leqslant \rho(t), 2 \int_{t_0}^{\infty} F(t, \rho(t)) dt < +\infty$, $\int_{t_0}^{\infty} f(t, \rho(t)) dt$ $< +\infty$ for $t \in \mathcal{F}$. Then the trivial solution u = 0 of (2) is stable. Assume that the hypothesis of theorem 1 holds expect that $\int_{t_0}^{\infty} F(t, \rho(t)) dt < +\infty$ is replaced by $\int_{t_0}^{\infty} F(t, \rho(t)) dt = -\infty$. Then the solution u = 0 is asymptotically stable.

Proof By assumption 2), $\exists G > 0$, $\ni \cdot \int_{t_0}^{t} F(\tau, \rho(\tau)) d\tau < \ln G$, $t > t_0$. For $\forall \varepsilon > 0$, $\varepsilon < \rho(t)$, $\exists t_1 > t_0 \ni \cdot \int_{t_0}^{t} f(\tau, \rho(\tau)) d\tau < \varepsilon/2G$, $t > t_1$. Choose $u_1 < \varepsilon/2G$, We shall prove $u(t, t_1, u_1) < \varepsilon$, whenever $t > t_1$. For otherwise, there would exist $t_2 < t_3 \ni \cdot u(t_2) = \frac{\varepsilon}{2G}$

^{*} Received Sept. 12, 1981.

 $< u(t) \le \varepsilon = u(t_3) < \rho(t)$, for $t_2 \le t \le t_3$. We obtain an inequality

$$u(t) \leqslant \frac{\varepsilon}{G} \exp \int_{t_3}^{t} F(\tau, \rho(\tau)) d\tau < \varepsilon$$
, and then $u(t_3) = \varepsilon < \varepsilon$. (3)

This contradication proves the solution u = 0 is stable.

Finally, under the assumptions $\int_{t_0}^{\infty} F(t,\rho(t))dt = -\infty$, we prove that the solution u=0 is asymptotically stable. By (2), $u(t) \leqslant 2u(t_2) + \int_{t_2}^{t} F(\tau,u(\tau)) \ u(\tau)d\tau$, where $\int_{t_2}^{t} f(\tau,\rho(\tau))d\tau < u(t_2)$. Thus, $u(t) \leqslant 2u(t_2) \exp \int_{t_2}^{t} F(\tau,\rho(\tau))d\tau \rightarrow 0$, $t\rightarrow\infty$.

If $\int_{t_2}^{\infty} F(t,\rho(t)) \ dt$, $\int_{t_2}^{\infty} f(t,\rho(t)) \ dt$ is uniformly convergent for t_0 , then solution

Theorem 2 Consider the d. e.

u=0 is uniformly stable.

$$\frac{du}{dt} = F(t, u)g(u) + f(t, u). \tag{4}$$

Suppose that: 1) Let g(u) be continuous, positive and nondecreasing with respect to $u \in [0, \rho_0]$, g(0) = 0, $G(u) = \int_0^u \frac{ds}{g(s)}$ be convergent. 2) There exist positive number $H \leq \rho_0 = \int_{t_0}^{\infty} f(t, u(t)) dt \leq \int_{t_0}^{\infty} f(t, H) dt < +\infty$ and $\int_{t_0}^{\infty} F(t, u(t)) dt \leq \int_{t_0}^{\infty} F(t, H) dt < +\infty$ for $u \leq H$. Then, the solution u = 0 of (4) is stable. Assume that the hypothesis 2) holds expect that $\int_{t_0}^{\infty} F(t, H) dt < +\infty$ is replaced by $\int_{t_0}^{\infty} F(t, H) dt = -\infty$. Then the solution u = 0 is asymptotically stable.

Proof Let G(0)=0 and G(u) be continuous in u=0. Choose positive $\eta < H$, g(t) < G(t) < G(t) < 0. By the hypothesis $g(t) < t_1 > t_2 > t_3 > t_4 > t_4 > t_5 < t_5 < t_5 < t_6 < t_7 < t_8 <$

$$G(H) = G(u(t_3)) < G(\eta) + G(H)/2 < G(H),$$

where $G(u) = \int_{u_0}^{u} \frac{ds}{g(s)}$. This contradiction proves the solution u = 0 is stable.

Finally, under the assumptions $\int_{t_0}^{\infty} F(t, \rho(t)) dt = -\infty$, applying Bihari's inequalities we can prove easily that the solution u = 0 is asymptotically stable.

Lemma Suppose that: 1) $u, \varphi \in C[\mathcal{T}, R_+]$, where R_+ denotes the nonnegative real line; 2) $g \in C[R_+, R_+]$, g(u) monotone in u and g(0) = 0 and $kg(u) \leq g(ku), k > 0$, 3) f(t) monotone in t and f(t) > 0, $t \in \mathcal{T}$. Assume that $u(t) \leq f(t) + \int_{t_0}^t \varphi(\tau) g(u(\tau)) d\tau$.

Then $u(t) \leq f(t)G^{-1}[G(1) + \int_0^t \varphi(\tau)d\tau]$, t>0, where G^{-1} is the inverse function of G and $G(1) + \int_0^t \varphi(\tau)d\tau \in Dom(G^{-1})$.

The last two theorem can be obtained as consequences of the preceding lemma. Theorem 3 Suppose that: 1) g(u) is monotonic nondecreasing and continuous for u, g(0) = 0 and $kg(u) \le g(ku)$, k > 0; 2) the hypothesis 2) of theorem 2 holds. Then the solution u = 0 of (4) is stable. Assume that the hypothesis 2) $\int_{t_0}^{t} F(t, H) dt < +\infty$ is replaced by $\int_{t_0}^{\infty} F(t, H) dt = -\infty$. Then the solution u = 0 is asymptotically stable.

Theorem 4 Consider d. e. (4). Suppose that: 1) g(0) = 0, g is continuous nonnegative and monotonic nondecreasing in u; 2) for sufficiently small $b_1, b_2, 0 < b_1 < b_2 \ni \cdot \int_{t_0}^t F(\tau, b_1) d\tau \leqslant \int_{t_0}^t F(\tau, b_2) d\tau$, $\int_{t_0}^t f(\tau, b_1) d\tau \leqslant \int_{t_0}^t f(\tau, b_2) d\tau$, 3) $\int_{t_0}^{\infty} F(t, b) dt < + \infty$, $\int_{t_0}^{\infty} f(t, b) dt < + \infty$ for small b > 0. Then the solution u = 0 of (4) is stable. Assume that the hypothesis of theorem holds expect that $\int_{t_0}^t F(\tau, b) d\tau < + \infty$ is replaced by $\int_{t_0}^{\infty} F(\tau, b) d\tau = -\infty$. Then u = 0 is asymptotically stable.

Theorem 5 Consider $\frac{du}{dt} = F(t, u), \ t \in \mathcal{T}, \ 0 \le u \le \rho_0$. Suppose that: 1) $\exists H \le \rho_0$ $\exists \cdot \int_{t_0}^t F(\tau, u(\tau)) d\tau \ge \int_{t_0}^t F(\tau, H) d\tau$; 2) $\lim_{t \to \infty} \int_{t_0}^t F(\tau, H) d\tau = +\infty$. Then u = 0 is unstable. This theorem is the extension of unstable theorem of Persidskij.

References

- [1] Pachpatle, B. G., A note on Grenwall-Bellman inequality, J. Math. Anal. Appl., 44 (1973), 758-762.
- [2] Grimmer, R., Stability of a scalar differential equation, Proc. Amer. Math. Soc., 32-2 (1972), 452-456.