On Univalent Functions with Negative and

Missing Coefficients*

Vinod Kumar

(Dept. Math., Janta College, Bakewar-206124, Etawah (U. P.), India)

Abstract Let $P_k(A,B)$ be the class of functions $f(z) = z - \sum_{n=k}^{\infty} |a_n| z^n$, $k \ge 2$, regular in the unit disc $U = \{z : |z| < 1\}$ and satisfying |[f'(z) - 1]/[A - Bf'(z)]| < 1 for $z \in U$, where $-1 \le B < A \le 1$. In this paper we obtain coefficient estimate, distortion and closure theorems and radius of convexity for the class $P_k(A,B)$ under the assumption $-1 \le B \le 0$. We also obtain class preserving integral operators of the form

$$F(z) = \frac{c+1}{z^c} \int_0^z t^{c-1} f(t) dt, c > -1$$

for the class $P_k(A,B)$. Conversely when $F \in P_k(A,B)$, radius of univalence of f has been determined.

1. Introduction

Let S be the class of functions $f(z) = z + \sum_{n=2}^{\infty} a_n z^n$ regular in the unit disc $U = \{z: |z| < 1\}$. For $-1 \le B < A \le 1$, let $P^*(A, B)$ be the class of those functions f of S for which f'(z) is subordinate to (1 + Az)/(1 + Bz). In other words $f \in P^*(A, B)$ if and only if there exists a function ω regular in U and satisfying $\omega(0) = 0$ and $|\omega(z)| < 1$ for $z \in U$, such that

(1.1)
$$f'(z) = \frac{1 + A_{\mathcal{D}}(z)}{1 + B_{\mathcal{D}}(z)}, z \in U.$$

The condition (1.1) is equivalent to

$$\left|\frac{f'(z)-1}{A-Bf'(z)}\right|<1, z\in U.$$

It is clear from (1.1) that $\operatorname{Re}\{f'(z)\} > 0, z \in U$, and hence [4, p. 6] the members of $P^*(A, B)$ are univalent in U. Let T denote the subclass of S consisting of functions univalent in U and having Taylor expansion of the form $f(z) = z - \sum_{n=k}^{\infty} |a_n| z^n$, $k \ge 2$. Let us define

AMS (MOS) subject classification (1980): 30C45

^{*} Received May 29, 1982.

$$P_k(A,B) = P^{\oplus}(A,B) \cap T$$
.

Let us denote by $S^*(A, B)$ and $K^*(A, B)$, the subclasses of S obtained by replacing f'(z) in (1.1) by zf'(z)/f(z) and (1+zf''(z)/f'(z)) respectively. Let

$$S_k(A,B) = S^*(A,B) \cap T$$
 and $K_k(A,B) = K^*(A,B) \cap T$.

Author and Shukla [5] have recently studied the classes $S_k(A,B)$ and $K_k(A,B)$ when $-1 \le B \le 0$. In this paper, under the assumption $-1 \le B \le 0$, we obtain coefficient estimate, distortion and covering theorems and radius of convexity for the class $P_k(A,B)$. While determining the radius of convexity for $P_k(A,B)$, we have been able to extend some known results of Hallenbeck [2] and MacGregor [3]. We also obtain the class preserving integral operators of the form

(1.2)
$$F(z) = \frac{c+1}{z^c} \int_0^z t^{c-1} f(t) dt, \ c > -1$$

for $P_k(A,B)$. Conversely, when $F \in P_k(A,B)$, we determine the radius of univalence of f defined by (1.2). Lastly, we show that the class $P_k(A,B)$ is closed under 'arithmetic mean' and 'convex linear combinations'.

Note Throughout this paper we assume that $-1 \le B \le 0$ and $k \ge 2$.

2. Coefficient estimate

Theorem 1 A function $f(z) = z - \sum_{n=k}^{\infty} |a_n| z^n$ is in $P_k(A, B)$ if and only if

$$\sum_{n=k}^{\infty} n(1-B) |a_n| \leq (A-B).$$

This result is sharp.

Proof Let |z|=1. Then

$$|f'(z) - 1| - |A - Bf'(z)| = |-\sum_{n=k}^{\infty} n|a_n|z^{n-1}| - |(A - B) + B\sum_{n=k}^{\infty} n|a_n|z^{n-1}|$$

$$\leq \sum_{n=k}^{\infty} n(1 - B)|a_n| - (A - B), \text{ since } -1 \leq B \leq 0$$

$$\leq 0, \text{ by assumption.}$$

Hence, by maximum modulus principle, $f \in P_k(A, B)$.

To prove the converse, let

$$\left| \frac{f'(z) - 1}{A - Bf'(z)} \right| = \left| \frac{-\sum_{n=k}^{\infty} n |a_n| z^{n-1}}{(A - B) + B\sum_{n=k}^{\infty} n |a_n| z^{n-1}} \right| < 1, \quad z \in U$$

Since $|\operatorname{Re}(z)| \leq |z|$ for all z, we have

(2.1)
$$\operatorname{Re}\left(\frac{\sum_{n=k}^{\infty}n|a_{n}|z^{n-1}}{(A-B)+B\sum_{n=k}^{\infty}n|a_{n}|z^{n-1}}\right)<1.$$

Choose values of z on the real axis so that f'(z) is real. Upon clearing the denominator in (2.1) and letting $z \rightarrow 1$ through real values, we obtain

$$\sum_{n=k}^{\infty} n |a_n| \leqslant (A-B) + B \sum_{n=k}^{\infty} n |a_n|.$$

This completes the proof of theorem.

Sharpness follows if we take

$$f(z) = z - \frac{A - B}{n(1 - B)} z^n, \quad n \geqslant k.$$

3. Distortion properties

Theorem 2 If $f \in P_h(A, B)$, then for |z| = r

(3.1)
$$r - \frac{A-B}{k(1-B)} r^{k} \leqslant |f(z)| \leqslant r + \frac{A-B}{k(1-B)} r^{k}$$

and

$$(3.2) 1 - \frac{A - B}{1 - B} r^{k-1} \le |f'(z)| \le 1 + \frac{A - B}{1 - B} r^{k-1}.$$

All these inequalities are sharp.

Proof Let $f(z) = z - \sum_{n=k}^{\infty} |a_n| z^n$. Then, it follows from Theorem 1 that

$$\sum_{n=b}^{\infty} |a_n| \leqslant \frac{A-B}{k(1-B)}.$$

Hence

$$|f(z)| \leqslant r + \sum_{n=k}^{\infty} |a_n| r^n \leqslant r + r^k \sum_{n=k}^{\infty} |a_n| \leqslant r + \frac{A - B}{k(1 - B)} r^k$$

and

$$|f(z)| \geqslant r - \sum_{n=k}^{\infty} |a_n| r^n \geqslant r - r^k \sum_{n=k}^{\infty} |a_n| \geqslant r - \frac{A - B}{k(1 - B)} r^k$$

Thus (3.1) follows. Further

(3.3)
$$|f'(z)| \leq 1 + \sum_{n=1}^{\infty} n |a_n| r^{n-1} \leq 1 + r^{k-1} \sum_{n=1}^{8} n |a_n|$$

and

(3.4)
$$|f'(z)| \ge 1 - \sum_{n=1}^{\infty} n |a_n| r^{k-1} \ge 1 - r^{k-1} \sum_{n=1}^{\infty} n |a_n|.$$

But, from Theorem 1, it holds that

$$(3.5) \qquad \sum_{n=b}^{\infty} n|a_n| \leqslant \frac{A-B}{1-B}.$$

The inequalities in (3.2) follow now by using (3.5) in (3.3) and (3.4). Equality in (3.1) and (3.2) is obtained if we take

(3.6)
$$f(z) = z - \frac{A - B}{k(1 - B)} z^{k}.$$

Note For the above function, equality on the left hand side of (3.1) is obtained at z=r whereas on the right hand side equality is obtained at z=-r when $k=2,4,6,\cdots$; z=ir when $k=3,7,11,\cdots$ and $z=re^{i\pi/(k-1)}$ when $k=5,9,13,\cdots$. Similarly, the points where equality holds in (3.2) can be obtained.

Corollary 1 If $f \in P_k(A, B)$, then the disc U is mapped by f onto a domain that contains the disc $|w| < \frac{k(1-B)-(A-B)}{k(1-B)}$. The result is sharp with extremal function f given by (3.6).

The above corollary follows if we let $r \rightarrow 1$ in the left hand side inequality in (3.1). An interesting case appears when A = 1. In this case |w| < (k-1)/k.

4. Integral operators

Theorem 3 Let c be a real number such that c>-1. If $f\in P_k(A,B)$, then the function F defined by

(4.1)
$$F(z) = \frac{c+1}{z^c} \int_0^z t^{c-1} f(t) dt$$

also belongs to $P_k(A, B)$.

Proof Let $f(z) = z - \sum_{n=k}^{\infty} |a_n| z^n$. Then from the representation of F, it follows that

$$F(z) = z - \sum_{n=b}^{\infty} |b_n| z^z,$$

where

$$|b_n| = \left(\frac{c+1}{c+n}\right)|a_n|.$$

Therefore

$$\sum_{n=k}^{\infty} n(1-B) |b_n| = \sum_{n=k}^{\infty} n(1-B) \left(\frac{c+1}{c+n} \right) |a_n| \leq \sum_{n=k}^{\infty} n(1-B) |a_n| \leq (A-B),$$

since $f \in P_k(A, B)$. Hence, by Theorem 1, $F \in P_k(A, B)$.

Theorem 4 Let c be a real number such that c>-1. If $F\in P_k(A,B)$, then the function f defined by (4.1) is univalent in $|z|< R^*$, where

$$R^* = \inf_{n \to 1} \left[\left(\frac{c+1}{c+n} \right) \left(\frac{1-B}{A-B} \right) \right]^{1/(n-1)}$$
.

This result is sharp.

Proof Let $F(z) = z - \sum_{n=k}^{\infty} |a_n| z^n$. It follows then from (4.1) that

$$f(z) = z^{1-c} [z^c F(z)]' / (c+1) = z - \sum_{n=1}^{\infty} \left(\frac{c+n}{c+1}\right) |a_n| z^n$$

In order to obtain the required result it suffices to show that |f'(z)-1|<1 in $|z|< R^*$.

Now

$$|f'(z)-1| = \left|-\sum_{n=k}^{\infty} n\left(\frac{c+n}{1+c}\right)|a_n|z^{n-1}\right| \leq \sum_{n=k}^{\infty} n\left(\frac{c+n}{c+1}\right)|a_n||z|^{n-1}.$$

Thus

$$|f'(z)-1|<1$$
, if

(4.2)
$$\sum_{n=k}^{\infty} n\left(\frac{c+n}{c+1}\right) |a_n| |z|^{n-1} < 1.$$

But Theorem 1 confirms that

$$\sum_{n=k}^{\infty} n\left(\frac{1-B}{A-B}\right) |a_n| \leqslant 1.$$

Hence (4.2) will be satisfied if

$$n\left(\frac{c+n}{c+1}\right)|a_n||z|^{n+1} < n\left(\frac{1-B}{A-B}\right)|a_n|, \quad n=k, \ k+1, \dots$$

or if

$$|z| < \left[\left(\frac{c+1}{c+n} \right) \left(\frac{1-B}{A-B} \right) \right]^{1/(n-1)}, n=k, k+1, \cdots$$

Therefore f is univalent in $|z| < R^*$. Sharpness follows if we take

$$F(z) = z - \frac{A - B}{n(1 - B)} z^n, \quad n \geqslant k.$$

5. Radius of convexity

Theorem 5 If $f \in P_k(A, B)$, then f is convex in the disc |z| < R, where

$$R = \inf_{n > 1} \left[\frac{1 - B}{n(A - B)} \right]^{1/(n-1)}$$
.

The result is sharp.

Proof In order to establish the required result it suffices to show that |zf''(z)/f'(z)| < 1 in |z| < R. Let $f(z) = z - \sum_{n=b}^{\infty} |a_n|z^n$. Then we have

$$\left|\frac{zf''(z)}{f'(z)}\right| = \left| \begin{array}{c} -\sum_{n=k}^{\infty} n(n-1) |a_n| z^{n-1} \\ 1 - \sum_{n=k}^{\infty} n|a_n| z^{n-1} \end{array} \right| \leq \frac{\sum_{n=k}^{\infty} n(n-1) |a_n| |z|^{n-1}}{1 - \sum_{n=k}^{\infty} n|a_n| |z|^{n-1}} .$$

Therefore |zf''(z)/f'(z)| < 1, if

$$\sum_{n=k}^{\infty} n(n-1) |a_n||z|^{n-1} < 1 - \sum_{n=k}^{\infty} n|a_n||z|^{n-1}$$

or if

(5.1)
$$\sum_{n=1}^{\infty} n^2 |a_n||z|^{n-1} < 1.$$

Also, by Theorem 1, we have

$$\sum_{n=b}^{\infty} n\left(\frac{1-B}{A-B}\right) |a_n| \leqslant 1.$$

Hence (5.1) will be satisfied if

$$n^{2} |a_{n}| |z|^{n-1} < n \left(\frac{1-B}{A-B}\right) |a_{n}|, \quad n=k, k+1, \cdots$$

or if

$$|z| < \left[\frac{1-B}{n(A-B)}\right]^{1/(n-1)}, \quad n=k, \ k+1, \dots.$$

Therefore f is convex in |z| < R. Sharpness follows if we take

$$f(z) = z - \frac{A - B}{n(1 - B)} z^n, \ n \geqslant k_{\bullet}$$

Since $P_2(1, -1)$ and $P_2(0, -1)$ are the classes of functions $f(z) = z - \sum_{n=2}^{\infty} |a_n| z^n$ that satisfy the conditions $\text{Re}\{f'(z)\} > 0$ and $\text{Re}\{f'(z)\} > \frac{1}{2}$ respectively, we have the following corollaries as the direct consequences of Theorem 5.

Corollary 2 Let $f(z) = z - \sum_{n=2}^{\infty} |a_n| z^n$. If $\text{Re}\{f'(z)\} > 0$, then f is convex in |z|

 $<\frac{1}{2}$. The result is sharp with the extremal function $f(z) = z - z^2/2$.

Remark The above corollary extends a result of MacGregor [3] for the functions having negative coefficients. In fact, MacGregor proved that, if $f \in S$ and $\text{Re}\{f'(z)\} > 0$, then f is convex in $|z| < \sqrt{2} - 1$ (=.414 approximate).

Corollary 3 Let $f(z) = z - \sum_{n=2}^{\infty} |a_n| z^n$. If $\text{Re}\{f'(z)\} > \frac{1}{2}$, then f is convex in $|z| < 2^{-1/3}$. The result is sharp with the extremal function $f(z) = z - z^4/8$.

Remark The above corollary extends a result of Hallenbeck [2] for the functions having negative coefficients. In fact, Hallenbeck proved that, if $f \in S$ and $\text{Re}\{f'(z)\} > \frac{1}{2}$, then f is convex in $|z| < 2^{-\frac{1}{2}}$.

6. Closure properties

In this section we show that the class $P_k(A,B)$ is closed under 'arithmetic mean' and 'convex linear combinations'.

Theorem 6 Let $f_j(z) = z - \sum_{n=k}^{\infty} |a_{nj}| z^n$, $j = 1, 2, \dots, m$, If $f_j \in P_k(A, B)$ for each $j = 1, 2, \dots, m$, then the function $h(z) = z - \sum_{n=k}^{\infty} |b_n| z^n$ also belongs to $P_k(A, B)$, where $b_n = \frac{1}{m} \sum_{i=1}^{m} a_{ni}$.

Proof Since $f_i \in P_k(A, B)$, it follows from Theorem 1 that

$$\sum_{n=k}^{\infty} n(1-B) |a_{n,j}| \leq (A-B), \quad j=1,2,3,\dots,m.$$

Therefore

$$\sum_{n=h}^{\infty} n(1-B) |b_n| \leq \sum_{n=h}^{\infty} \left[n(1-B) \left\{ \frac{1}{m} \sum_{j=1}^{m} |a_{n,j}| \right\} \right] \leq (A-B).$$

Hence, by Theorem 1, $h \in P_h(A, B)$.

Theorem 7 Let

$$f_1(z) = z$$
, $f_n(z) = z - \frac{A - B}{n(1 - B)}$ $(n = k, k + 1, \dots)$.

Then $f \in P_k(A, B)$ if and only if it can be expressed in the form

$$f(z) = \lambda_1 f_1(z) + \sum_{n=1}^{\infty} \lambda_n f_n(z),$$

where $\lambda_n \ge 0$ and $\lambda_1 + \sum_{n=k}^{\infty} \lambda_n = 1$.

Proof Let us suppose that

$$f(z) = \lambda_1 f_1(z) + \sum_{n=k}^{\infty} \lambda_n f_n(z) = z - \sum_{n=k}^{\infty} \frac{A - B}{n(1 - B)} \lambda_n z^n.$$

Then

$$\sum_{n=1}^{\infty} \left[\left\{ n(1-B) \right\} \left\{ \frac{A-B}{n(1-B)} \right\} \lambda_n \right] = (A-B) \sum_{n=1}^{\infty} \lambda_n \leqslant (A-B).$$

Hence, by Theorem 1, $f \in P_h(A, B)$.

Conversely, let $f \in P_k(A, B)$. It follows then from Theorem 1 that

$$|a_n| \leqslant \frac{A-B}{n(1-B)}, \quad (n=k,k+1,\cdots).$$

etting

$$\lambda_n = \frac{n(1-B)}{A-B} |a_n|, \qquad (n=k, k+1, \cdots).$$

and

$$\lambda_1 = 1 - \sum_{n=1}^{\infty} \lambda_n ,$$

we have

$$f(z) = \lambda_1 f_1(z) + \sum_{n=1}^{\infty} \lambda_n f_n(z).$$

This completes the proof of theorem.

Our results generalize the results of Gupta and Jain [1].

Acknowledgement The author expresses his sincere thanks to Dr. S. L. Shukla for the discussions made with him during the preparation of this paper.

References

- [1] Gupta, V. P. and Jain, P. K., Certain classes of univalent functions with negative coefficients. II, Bull. Austral. Math. Soc. 15(1976), 467-474.
- [2] Hallenbeck, D. J., Convex hulls and extreme points of some families of univalent functions, Trans. Amer. Math. Soc. 192(1974), 285—292.
- [3] MacGregor, T. H., Functions whose derivative has a positive real part, Trans. Amer. Math. Soc. 104(1962), 532-537.
- [4] Glenn Schober, Univalent functions-Selected topics, Lecture Notes in Matthematics 478, Sprin ger-Verlag, Berlin, Heidelberg, New York (1975).
- [5] Shukla, S. L. and Vinod Kumar, Univalent functions with negative and missing coefficients, (Submitted for publication).
- [6] Herb Silverman, Univalent functions with negative coefficients, Proc. Amer. Math. Soc. 51 (1975), 109-116.