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The Number of Nontrivial Solutions of Nonlinear

Two Point Boundary Value Problems*
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In this paper we use the Leray-Schauder degree theory to investigate the num-
ber of nontrivial solutions of the nonlinear two point boundary value problem
(} d*x
\ dt?
| x(0) =x(1) =0,

+f(x) =0, 0<t<I;

(1)

where f(x) is non-negative and continuous for 0<<x<{+ce and f(0) =0, Obviously,
x(t)y=(0 is a (trivial) solution of (1),
Theorem 1 If

0<Tim 1*) <3 (2)
x-4+0 X
and
243 < lim f-—%l<+ oo, (3)
X—+on

then the problem (1) has at least one nontrivial solution x(t) €C*[0, 1] satisfying
x(H)>0(Vo<t<l),

Proof It is well known that the solution (in C*[ 0, 1 ]) of problem (1) is
equivalent to the solution (in C[0, 1]) of the Hammerstein integral equation
1
2t =[G, 9fEEIds=Ax®), (4)
0
where G (t, s) denotes the corresponding Green function,

t(1-s), t<s;

t =
G0 ={ s(-1), t>s,

Let p={x®)|x® €clo, 1], x(¢)=0} and P, ={x(®)[x(¢) EP,
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min  x()>=(1/2-¢) ||x]|| .} for 0<<e<1/2, It it easy to see that p and P, are

1/2-2<t<1/2+¢

cones in C[0,1] (P,CP) and A is completely continuous from p into P,

Suppose that x(t) € p, Observing G (f,s) <s(1—-s) we obtain

1
| Ax Ilc<Ls<1 -8)f(x(s))ds, (5)

On the other hand, for 1/2-e<<t<<1/2 +¢&, we have

[tA-9=1/2-e)A-3), t<Ss;
G(t,S) =1
s(1-ty=sf1-(1/2+8)]=(1/2-¢&)s, t>s5,
and therefore

G(t,S)Z(-—;—e)s(l—S), V%—8<t<%+s, 0<s<1,
hence
!
min  Ax($)> %—s)js(l—s)j(x(s))ds, 6)
1]

1_ 1l,e
F-est<l+

It follows from (5) and (6) that

min  Ax(t) 2(% - 8)" Ax|, ,

1-crsyve
i.e., Ax(t)y ep,, Thus, A(P)CP,, and hence
AP)CP,, Vo<e<t, (1)
By virtue of (2) and f(0) =0, there exist r>0 and 0<7<8 such that

IsSf<@-1x, YVosx<r, (8)

Now we prove that
Ax(W) xx(t), Yx@)€EP, |x||. =1, (9)

In fact, if (9) is not true, there exists x,(t) EP, ||x,||.=r such that Ax, (t) =x, (1),
then

1 1

X, (1) <Ax0(t)<(8—r)LG(t, $)%, (5)ds< (8 - 1) onllcj G(1,s)ds
. 0

(4T _ X

=(1- Dyra-vlxl<(1-4) Il

hence uxu\l,<(1—%)ux“l\(<llxau ., which is a contradiction, and therefore (9) holds.

By virtue of (3 ) there exist >0 and 0>0 such that

FX)=(24v 3 +o)x, Yx>n, (10)
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Choose

. -1
R>max {r,n(5-¢) |, 1y
we prove that

Ax(t)<12\/?8(1—8)<%—E)x(t), Vx(t) €P,, |x].=R.. (12)

Suppose that (12) is not true. Then, there exists x*(t) € P,, ||x*||.=R, such that

A <12y Fe@-o) (5 -e)x ). 13)
Observing

e
we have

Ax*(%); I:G(%, S f(x* (s) )ds;Ji:G(%,' s)f (x*(s))ds

Lie
=243 + O)F G(—l—, S)x* (S)ds= (244 3 +0)
1 2

2 L4

X (-%- - e)][x* [lCJ’::G(A;, s)ds

=(12¢3 +0/2) (1/2 ~e)e(1-8&)||x¥*|.. (14}
From (13) and (14) we obtain
- . 7 * —uf 1 el (P}
(1207 + )l =" <1235 )<12v T lx* .,

which is a contradiction. Hence, (12) holds.

It is easy to know that the fnnction @(e) =e(1-¢&)(1/2-¢) attains its maxi-

mum in 0<{e<{1/2 at 8=8°=3_—(;/ 3 and @ (&) =%, Put e=¢, in (12), we obtain

AX (DX (L), Vx() EP.,, IXll.=R... ' (15)

Observing (7), (9) and (15) and using the fixed point theorem of cone expansion
(see [ 2] Theorem 45,1 or [ 3] Corollary 12,5), we assert that A has a fixed
point x(t) € p,, satisfying r<|[x||,<R., and our theorem is proved.

Remark 1 Theorem 1 can not be deduced from the results of [ 1 ], since the
Green function G(t, s)does not satisfy the conditions in [ 1],

Remark 2 It is easy to point out some elementary functions f(x), which
satisfy the conditions of theorem 13 for example,
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f(x)=Zaix‘, ai>0(i=19 2, sy M), 01<8, a,>0, n>1,
im ]

42x*(2 — cosx)

fx) = 1T %

Theorem 2 Let (3) be satisfied and

243 < 1im %) < 4 oo, (16)

Suppose that there exist R>O such that

.max f(x) <8R, amn

0<x<k

Then the problem (1) has at least two nontrivial solutions x,(t) €C?[0, 1] and
x,(t) €C[0, 1] satisfying x, (¢)>0 and x, (1) >0(V0<t<1),

Proof we use the notations in the proof of theorem 1, It is easy to see that
¢ 7) also holds now. Observing (17) and using the method similar to the proof of
(9), we can deduce that

Ax () xx(t), VYx() €P, |Ix||.=R. (18)

On the other hand, observing (3) and (16) and using the method similar to the
proof of (15), we can assert that there exist R,>>R>r,>0 such that

Ax(DXx(), Vx@) €EP,,, %].=R, (19)
and
Ax ()X (1), Vx(t) €EP,,, ||%]l.=7q. 20

Now, by the fixed point theorem of cone expansion anu compression it follows
from (19), (18) and (20) that there exist x,(t) €P,, and x,(t) €pP,, such that
Ax;(t) =x;(t) (i=1, 2) and R, >|lx,||.>R>||x,l|.>r,, Our theorem is proved.

Remark 3 It is easy to point out some elementary functions f(x), which
satisfy the conditions of theorem 2; for example,

f(x) =x%+xF (B>1>e>0),
f(x)=e'In(1+ %),
In both cases we may choose R=1,
In the following theotem we assume that f(x) is defined and continuous in
—oox+o and f(0) =0,
Theorem 3 If

xf(%) >0, V —o0<x<l +00, | 21)
0<tim! ¥) <3 (22)
x-0 X
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and

243 <1_i3i%"l< + o0 (23)

then the problem (1) has at least two nontrivial solutions x () €C*0,1] and
%, (1) €C*[0, 1] satisfying x, () >0 and x,(t) <<0(V 0<t<1),
Proof From (21) we have

fx)=0, Vx>0; f(x)<0, Vx<0, (24)

Hence, theorem 1 implies that problem (1) has a solution x,(t) €C2[0,1] satisfy-
ing x, () >0(Y0<t<D),
Now, let g(x) = -f(-x), we find from (24), (22) and (23) that

8(x)=0, ¥x>0; g(0) =0,
0<im8® _ Tim {(=%) -4
x-+0 X x++0 —X

and

2403 < 1im 8 1im =% | o

To¥e ¥ate X

Hence, theorem 1 implies that the problem

dzx
(4% g T8 =0, 0<t<1;
X(0)=x(1)=0

has a solution x*(¢) €C[0,1] satisfying x* () >0(V 0<t<1),
Put x,(t) = —x*(t), It is evident that x,(t) is a solution of problem (1) satisfying
%,(t) <0(VY0<t<1) and our theorem is proved. .

- Remark 4 It is easy to point out some elementary functions f(x), which
satisfy the conditions of theorem 3; for example,

f(x) =x® +x°(1 —sinx),

f0) =x1n (1+ 5 )

In the same way we can discuss the number of nontrivial solutions of the problem

dx

i +f(x) =0, 0<I<1;

x(0)=x'(1)=0

and establish three similar theorems: At this time, the corresponding Green
function is
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t, 1<s;

G ) ={ s, I>s8
b

and the corresponding cones are P= {x(t) [x(t) €C[0,1], %(t)=0} and P, = {x(t)]|x(2)
€P, minlx(t)>eﬂxilc} (0<e<l),
[
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