On the Maximality of the Sum of Two

Maximal Monotone Mappings in Banach Spaces*

Min Lequan

(Bejing University of Iron and Steel Technology)

Let (X, X^4) be a pair of real reflexive Banach spaces, and X^* be X's dual space. We assume without loss of generality that X and X^* are strictly convex (See Asplund [1]). Let A and B be two maximal monotone mappings from X into $2x^*$. Attouch [2] has shown that when $X = X^*$ is a real Hilbert space, if $Int(D(A) - D(B)) \ni 0$, then the sum A + B is still maximal mapping. In this note, we improve Attouch's theorem.

Theorem Let A and B be two maximal monotone mappings from X into 2^{x*} . Assume that $Int(D(A) - D(B)) \ni 0$, then A + B is a maximal monotone mapping.

References

- [1] Asplund, E., Averaged norms, Israel J. Math., 5(1967), pp. 227-233.
- [2] Attouch, H., On the maximality of the sum of two maximal monotone operators, Nonlinear Anal., v5, 2(1981), pp. 143-147.

^{*} Received Jen. 5, 1983.