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Although the Kalman filter gives an optimal recursive data processing scheme,
it has certain disadvantages such as its complexity in calculations. For this reason,
in real time tracking, the third order linear predictor-corrector filter, or commonly
known as the a-B-y filter, is quite often used instead. In particular, if the measure-
ment and input noise processes are not white, it is usually necessary to sacrifice
optimality for physical feasibility in the tracking process. In this paper, we discuss
a near-optimal digital tracking filter in the form of an e-8-y filter which is
very efficient in applications, Near-optimality is obtained by choosing the gain matrix
as the limit of the sequence of Kalman gain matrices. Input to observation noise
ratios in terms of the stochastic parameiers will be given as functions of a, 8, and
y. This allows the user to design an a-8-y tracking filter to attain near-optimal
performance. z-transforms will be applied to uncouple the filter equations for ana-
lyzing purposes,

1 Definition and existence of a near-optimai fiiter
The discrete-time system considered in this paper will be the usual time-invari-
ant state-space equations:
Xpey = DX+ Uy
where x, and z, are the state and observation vectors, respectively, at the k'* ins-
tance, ¢ the state transition matrix, HT the transpose of the measurement matrix,

and
(1) Uy =GU,+ 8§,
2) Vee1 =FV,+ 1,

the dynamic and observation noises, respectively, with
U,~N(0,0%) and v,~N (0,12,
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Of course, if white noise input is considered, then both G and F are zero matrices.
More generally, we will consider colored noise processes with
(3) E§.&7 =Q0:;, ENN] =R4;j, and EEM7 =0,
As usual, we also assume that Ex,=%,, Var x,=P,, Ex,ul =0, Ex,v5 =0, Ex,8% =0,
Ex,n%T =0, Eu,8T =0, Ev,n} =0, EuM] =0, Ev,§1 =0, and Eu,v] =0,

We now consider the Kalman filter equations:

Yir1u= (P -KHN Y1 +KiZy

with y,,_, = x, Where y,,.; =E[X,]Z,,,2,.,] and K, is the Kalman gain matrix at
the k'# instance to be described below. These Kalman equations are valid for white
noise processes. They are also valid for colored noise input processes provided that
the inverse matrix in the Riccati equation to be discussed below exists and that ¢
and H respectively are replaced by

D I 0 H
0 G 0 |and | 0 | ,
0 0 F I

Setting y, =y, = E[X,]Zy, -+, 2,], We have the well-known relationship
: Yee1n=PY 4,

Also, if 3),,,.; denotes the error covariance matrix associated with the estimatey,,_,,
then it can be calculated recursively by using the discrete-time Riccati equation

Zisrn = PLEwu-1 = ZenotHH Zip o H+ R ' HT 4 JOT + Q
with x,,_,=P,. The Kalman gain matrix at the k'* instance is then given by

Ki=®Lyu HH ZysH+R 2,

As usual, we also say that the pair [&,H] of matrices is completely detectable if
~ the corresponding pair [®T,H] is completely stabilizable; that is, whenever HTg=0
and ¢g=Ag for some constant i, we must have [A| <1 or g=0, (cf.[1])., The fol-
lowing result is contained in [1,5],

LEMMA 1 Let [d,H] be completely detectable and [d,S] be completely stabili-
zable for any S with SS” = Q. Then for any nonnegative definite symmetric initial condition
Ziarho-1o the limit as k—»oc0 0f X,,,, exists. Furthermore, this limit X is independent
Of Ziur-1 Gnd satisfies the steady-state discrete-time Riccati equation

' E=®[Z-ZHH'ZH +R) 'H'E1d" + Q,

Hence, for any nonnegative definite initial condition x,,,_;, the sequence of

Kalman gains K,, k=k,, k,+1,..., converges to some matrix K defined by
K=®zHH'EH+R) !,

which is independent of the initial condition £, ,._,. We call K the limiting Kalman

gain and the corresponding constant gain filter

{yln»l/k: (D -~ KHD) ¥yu-1+ K2,

(4)
Yo/-1=X, and Yu, 1= DY,
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the associated limiting Kalman filter., Since the Kalman filter is an optimal recursive
data processing algorithm, we will say that the limiting Kalman filter is a near-optimal
digital filter. The idea of working with the possible limits of sequences of Kalman
gains should be credited to R. E. Green and W. L. Shepherd, and the limiting
Kalman filter was introduced and studied in some detail for white noise processes
in [3]. Note that if the state transition matrix is nonsingular, then the near-optimal
filter described here can also be expressed by
(5) Yier =®Yi+ (D7) (Zu1 ~H'®YW) k= = 1,0, -, with y =715 |

For practical purposes, we only study the important model where the state tran-
sition matrix relates the position, velocity, and acceleration components of the
state vector from its k'4 instance to its (k+ 1)°* instance with sampling time h>>0,
and only position observations are given, Hence, when white and colored (non-
white) noise inputs are considered, we have &=¢,, H=H,, and ¢=&,_, H=H, tes-
pectively, where

:
ol ..
1 & h2/2 1 @, 1 0 0
&,= 0 1 B |, Hy=| 0 |, ®.= 0 G 0|, and Ho=| 0 |
Lo o 1 0/ o 0 F) 0
0
1

Here, G and F are the matrices that describe the colored noise process given in (1)
and (2), and as usual, we write the covariance matrices ¢ and R in (3) as

g, 0 0
Q= 00, 0 Jand R=[o_],
0 0 o,

where o0, 0, 0,0 and ¢,>0 are stochastic parameters representing position, velocity,
acceleration, and position measurement respectively. In addition, let § be a 7x7

matrix defined by

/0 0 0
Q=L0§0.
0 0 R

We have the following result.

LEMMA 2 Suppose that the eigenvalues of the matrices G and F are of absolute
value less than 1, Then the pairs [&,, H,] and [®.,H_ ] are both completely detectable;
and a necessary and sufficient condition for the pairs [®,, S] and [®,, §] to be com-
pletely stabilizable for any S and § satisfying SST=Q and §§" = Q is that o, is nonzero,

For white noise process we certainly do not have to assume anything on the
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(zero) matrices G and F, and as long as ¢, is nonzero, the above lemmas imply
that a near-optimal constant gain digital tracking filter always exists. For colored
(non-white) noise process, we have the following result,

THEOREM 1 Let the dynamic and observation colored noises u, and v, in (1) and
(2) be zero-mean stationary such that the eigenvalues of G and F are of absolute value
less than one, Then if o,#0, the discrete time system
(6) {xk+1=¢xh+uk
Z,=HTx,+ Vv,
admits a ncar- optimal digital tracking filter

Yir1w=L[P. ~KHLIY i1 + K2,

with Xo |
!

Yor-1=] 0 1 s ¥Vus1u =D Yoo
o)

where the limiting Kalman gain matrix K_ is given by
K,=®, L H (HIZH) '=05i®D L H,
and the limiting error convariance matrix ¥, satisfies the Riccati equation
L, =®,[5 -0t L ]DT+0
with
Z.=L00ijlrx1s
00,=011+017+07, +07y
and (10006001 *3

0 o ¢ o ¢ s (
L= : Dl
0 o ¢ ¢ o o

|
1000001 ) 544
When white noise input is considered, the corresponding Riccati equation
will be reduced to be
EW = ¢w [zw - a()—'lli’zwszlﬂ]@g + Q

with
L, =[0ijl3x3s Oow=01,+0,
andi 1 0 0
L,={ 0 0 0 |,
0 0 0

We remark that the assumption in Lemma 2 and the above theorem that the
matrices G and F have eigenvalues with absolute value less than one is not very
restrictive. In fact, we have the following

PROPOSITION 1. If the dynamic and observation colored noises v, and v, in (1)
and (2) are zero-mean stationary with diagonal matrices G and F, then the eigemvalues
(or diagonal entries) of G and F are all of absolute value less than one.

© 1995-2005 Tsinghua Tongfang Optical Disc Co., Ltd. All rights reserved.
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2 On near-optimai a-8-y filters
We now introduce the notion of near-optimality of an a-8-y filter. An -8y
filter will be said to be near-optimal if

[d, I 0 LB/h
Kc=} 0 G o v/h )|,

40 0 0 U

_—
where [7 and g are stochastic parameters, When the colored noise input processes become
white, an ¢-8-y filter is near-optimal if
a
K.=®, | B/h |,
y/h?

Since K, always exists whenever 0,0, provided that the eigenvalues of G and
F are of absolute value less than one, and depends on the stochastic parameters o,,
o, g, and g,, We can obtain a near- optimal ¢-B-y filter by choosing the values
of a, B, ¥, 60 and the vector {/ as functions of these parameters. We will see that
the dependence is only on the ratios ¢,/0,, 0,/0, and o,/o,.

The most important case in colored noise processes is F+#0, For convenience,
we only consider the case when G =0 here. we have the following result,

THEOREM 2 Let G=0, F={r]+0 and 0,0, Then the zero-mean stationary
colored noise a-B-y digital filter is near-optimal if and only if the following conditions
are satisfied:

(i) (2a+ 2B+ 7v)Y>0,
(ii) r=1)(r~1-rg)a+rof— ’2((’;3 9y>0,
(iii) (4a +B) (B+7) +3(B* — 2a7) —4»—"—;1—_{@1@0,
{v) B+V)Y=0,
r(r+1) rr+1)? .

) r+D)Fo+r-Da+— =08+ ¥~ + 120,
i) g: ——(/32 2av),

.. g, _ ht ro 4r@
(vii) % = x| Garaprna-g T2 g J U0y ]

o, _ B4 - rer+1) rr+1)t 208 _ 2

viid) Zn = yz[(r+1)(re+r Da+ TExD g TETD Ty 11 r+1],and

(ixX) the matrix
3= L6:idaxa
is a nonnegative definite symmetric matrix, with

© 1995-2005 Tsinghua Tongfang Optical Disc Co., Ltd. All rights reserved.
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" rar+1)
0'11=',‘.‘1“—[(r"1 er)a+ 9/3 20r—1 )297]

&12=—r—1:—1——[(r—1—6r) ﬁ+ re_rl Y]’

613:—‘—]:—“’("—1 "6’)7,

F1u= 1( 2(:J:1)2 y)

Gz = %<4a+3> B+P) +-(gr - 2a) -

=-6r) v,

5y =(a +i,8)v,

= r—1(/3 r—l)

G33= (B+7V)V,

- ré
63‘=—;_i—’y, and
rir+1) rr+1)?
-1 Pt -
Here, conditions (i) and (ii) are used to guarantee the existence of o, ! and a
non-zero x,. When G+0, the method to obtain the above theorem also applies. Since

544=TE—?[(’+1) (ro+r-na+ ?—-r=+1].

its statement is fairly complicated, we do not include it in this paper, On the other
hand, when both G and F are zero; that is, when white noise input is considered,
the above theorem reduces to the following result obtained in [3],

COROLLARY Let g,#0 and 0,+#0, Then the a-B-y digital filter for white noise
input processes is mear-optimal if and only if the following conditions are satisfied:

) 0<a<l, Y>0,
(i) vZay <B< (a+ ’2') aud
(iii) the matrix

\ @ A

p=| P ﬁ(a+B+—Z—)——§(2+a) Y(a+-—)

Y ?(a+—§—) YB+7Y)

is nonnegative definite. Furthermore, if the conditions (i), (ii), (iii) are satisfied,
then the stochastic parameters a,, 0,, 0,, 0, that guarantees near-optimality satisfy:

. o, __1 2 1
@{iv) e 1_a(a +aB+ > @Y 2,3),
o, __1 _ -
) o= 0,(132 zav)h 2,and
3 au - 1 2~ 4
(vi) oo =1 —a?! h*,
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3 Analysis of a-8-y-6 filters

5;‘ We again restrict ourselves to the important special case when G =0, Hence, a
' near -optimal a-8-y filter for colored noise input processes is characterized by the
equation 1 n h%/2 0 a

01 KB O B/h

0 0 1 0 y/ht | °
v0 0 0 r 6
Since the extra stochastic parameter ¢ can also be controlled according to the mea-
surement noise input, we will call this an a-8-y-9 digital tracking filter. The filter
equation can be written as

’ . (7) Viee1 =AY+ Z,0 W,
where -

K, =

1
l1-a (1-a)h 7(1—a)h2 -ar \1

; -B/h 1-8 (1—%6)’» -Br/h

—y/ht —y/h 1—%? —yr/h
1
-9 -—on -J6nt  a-or

and w=[a,B8/h,7/h%,0]" and y, = [¥s, 94 94> v+ ]7. We now utilize the z-transform me-
thod to analyse this a-8-v-0 filter equation. For convenience, we set 2z,=0 for
k<<0and y,=y,=9,=v,=0 for k< —1, Then if Z,Y,,Y; Y; and V denote the z-tran-
sforms of {z,}, {¥.}, {9}, {9.} and {v,} respectively, the filter equation (7) may
be written in the z-domain as

Y:

Y:

(8) -z] = —~2ZZW,
[A ] s

Y«
Hence, if the inverse z-transforms are applied, it is possible to uncouple filter
equation (7) to study the position, velocity, acceleratiom, and noise estimate com-
ponents separately, More specifically, we have the following result.
THEOREM 3 The a-B-y-9 digital tracking filter can be written as four uncoupled
recursive digital fllters:

(1) Va= Vo1 + @Y, 2+ 03V, 3 +0,Y,_ 4+,

+(—2a—-ra+B+-’2)—) zk_1+[a—ﬁ+%+(2a—ﬁ—l;—)r]z,,_z

i N

(ii) V=011 + 029,z + 3Py 3 + 8y + ’,‘1;{137';. -[E2+nNB-7lz_y

+B=V+ (2B=11T1ts = (B=V)1Zs },

© 1995-2005 Tsinghua Tongfang Optical Disc Co., Ltd. All rights reserved.
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i Y
(iii) 9= O Pe-1 + BPezt OPug + O Fia + Tz (2= (2+7Y) 2y
+ (1 +2M) 24 2—=T%_3],
(iV) vk = alvk_l + az'Uk_z + 03'0,,_3 + a4'l)k_4 + 0[21, - 3zk_1 + 3Zh—2 - Zk-3]

‘with the initial conditions y_;, 9.y, §_;, and v_;, where

a, = —a—ﬁ—%y+(6—1)r+3,

a2=2a+ﬁ——%—?+(a+B+—;—Y+30-—3)r—3,

a; = —a+(—2a—ﬁ+%¥—36+3)f+ 1,
a,=(@+0-10r,
Here, as usual, z,=0 for k<0 and y, =y, =9, =v,=0 for k<<-1,

Another advantage of studying the a-8-y-0 digital filter in the z-domain is that
.stability conditions in terms of the eigenvalues of A can be determined fairly easily.
We remark that Theorem 3 here includes the analogous white noise result obtained
4in (3] and that the method works regardless of the near-optimality of the digital
filter.
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