Rate of Convergence of an

Improved Reduced Gradient Method*

Zhou Huishan(周惠山)

(Qufu Teachers' College)

Abstract

An improved reduced gradient method was proposed in [4] to solve the nonlinear programming (P) with linear constraints:

(P)
$$\min_{x \in P} f(x)$$
 $R = \{x \in E^n | AX = b, x \ge 0\}$ $b \in E^m$

In this paper we introduce parameters ρ_k which is the skill used in [5] to the algorithm of [4] to obtain a reduced gradient method which is linearly convergent under the conditions of R being non-degenerate, f being second-order continuously differentiable and strong convex.

I Hypotheses and Notations

We shall study the following nonlinear programming with linear constraints:

(P)
$$\min_{x \in B} f(x)$$
 $R = \{x \mid Ax = b, x \ge 0, x \in E^n\}$

where A is a m×n matrix $(m \le n)$, $b \in E^m$, E^n and E^m are n-dimension and m-dimension Euclidean space respectively. Suppose that the rank of A is equal to m. We assume that

- (H1) $R \neq \phi$, every extreme point of the polyhedron R is non-degenerate.
- (H2) the function f: $E^n \rightarrow E^1$ is real-valued first-order continuously differentiable in E^n .

R* denotes the set of optimal solutions of (P). A_L^I is the submatrix of A consisting of elements a_{ij} , $(i,j) \in L \times J$, where $J \subseteq \{1, \dots, n\}$, $L \subseteq \{1, \dots, m\}$. If $L = \{1, \dots, m\}$, A_L^I is denoted by A^I for brief. $I \subseteq \{1, \dots, n\}$ is called a basis if both the number of elements in I and the rank of A^I are equal to m. $\vec{I} = \{1, \dots, n\} \setminus I$. $T(I) = (A^I)^{-1}A$, $T^{\bar{I}}(I) = (A^I)^{-1}A^{\bar{I}}$. $t(I) = (A^I)^{-1}b$. $T^{\bar{I}}(I)$ denotes the i row vector in $T^{\bar{I}}(I)$, $T^{\bar{I}}(I)$ denotes the (i,j) element in $T^{\bar{I}}(I)$.

^{*}Received June 17, 1981.

 $\nabla_I f(x) = \left(\frac{\partial f(x)}{\partial x_i}, \ j \in I\right)$ and $\nabla_{\bar{I}} f(x) = \left(\frac{\partial f(x)}{\partial x_i}, \ j \in \bar{I}\right)$ denote column vectors. x is a column vector, the transpose x^i is a row vector.

If $x = (x_I^t, x_{\bar{I}}^t)^t \in \mathbb{R}$, then for any basis I, we have $x_I = t(I) - T^{\bar{I}}(I)x_{\bar{I}}$, We define $\bar{f}(x_{\bar{I}}) = f(t(I) - T^{\bar{I}}(I)x_{\bar{I}}, x_{\bar{I}})$

and $\nabla \bar{f}(x_{\bar{I}})$ is called the "reduced gradient", which is equal to

$$\nabla \bar{f}(x_{\bar{I}}) = \nabla_{\bar{I}} f(x) - T^{\bar{I}}(I) \nabla_{I} f(x).$$

I Algorithm

We perform pivotal operations given in [3] and have the lemma 1.

Lemma 1 If (H1) is satisfied, then for any feasible point $x \in R$, any basis I, any positive number $\varepsilon < 1$ and any index set $D \subset \overline{I}$, the pivotal process must terminate after at most m times of pivotal operations. Furthermore, provided that I_p , ε_p , and D_p denote the final I, ε and D respectively, we have $\varepsilon_p < 1$, $D_p \subset \overline{I}_p$ and $\min \{x_i | i \in I_p\} > \frac{\varepsilon_p}{2}$,

Now we shall give an iterative algorithm of the reduced gradient method to solve the problem (P).

Algorithm Starting from an arbitrary feasible point $x^1 \in R$, an arbitrary basis I_0 , a positive number $\varepsilon_0 < 1$ and an index set $D_0 = \phi$, let k = 1.

- (1) Perform the pivotal operations for $(x^k, I_{k-1}, \varepsilon_{k-1}, D_{k-1})$, set $I_k = I_p$, $\varepsilon_k = \varepsilon_p$, $D_k = D_p$, we get $(x^k, I_k, \varepsilon_k, D_k)$ and go on to (2).
 - (2) Compute $T(I_k)$ and $\nabla \bar{f}(x_{\bar{I}_k}^k)$, and go on to (3).
 - (3) given $\rho_k > 0$, and go on to (4).
 - (4) Define vector $\tilde{x}_{\bar{I}}^{k}$:

$$\widetilde{x}_{j}^{h} = \begin{cases} 0 & \text{if } x_{j}^{h} \leq \rho_{h} \frac{\partial \overline{f}(x_{\overline{I}_{k}}^{h})}{\partial x_{i}}, \ j \in \overline{I}_{k}. \\ x_{j}^{h} - \rho_{h} \frac{\partial \overline{f}(x_{\overline{I}_{k}}^{h})}{\partial x_{i}} & \text{if } x_{j}^{h} > \rho_{h} \frac{\partial \overline{f}(x_{\overline{I}_{k}}^{h})}{\partial x_{i}}, \ j \in \overline{I}_{k}. \end{cases}$$

If $\tilde{\chi}_{\bar{I}_k}^k = \chi_{\bar{I}_k}^k$, stop; otherwise go on to (5).

(5) Let
$$x_{I_k}^{h^*} = t(I_k) - T^{\overline{I}_k}(I_k) \quad \widehat{x}_{I_k}^{h}$$
$$x^{h+1} = x^h + \lambda_h(\widehat{x}^h - x^h)$$

where λ_k is the maximum of the sequence 1, $\frac{1}{2}$, ..., $\frac{1}{2^n}$, ... which satisfy

$$x^{k+1} \in \mathbb{R}, \qquad f(x^k) - f(x^{k+1}) \geqslant -\frac{\lambda_k}{2} \nabla \bar{f}(x_{\bar{I}_k}^k)^t (\hat{x}_{\bar{I}_k}^k - x_{\bar{I}_k}^k)$$

Set k = k + 1, then go back to (1).

We obtain the following lemma from the proof of the proposition 4 in [3],

Lemma 2 There exists a positive integer k_0 such that $\epsilon_k = \epsilon_k$, for all $k \ge k_0$. As presented above, assuming that (H1) and (H2) are satisfied in the following lemmas, we obtain lemmas 3-5 similar to lemmas 2-3 in [4].

Lemma 3 Let $\varphi(x_{\overline{I}k}) = ||x_{\overline{I}k} - x_{\overline{I}k}^k + \rho_k \nabla \overline{f}(x_{\overline{I}k}^k)||^2$, then

- (1) $\mathfrak{X}_{\bar{I}_k}^k$ is the solution of min $\{\varphi(x_{\bar{I}_k}) | x_{\bar{I}_k} \ge 0\}$;
- (2) For any $x_{Iz} \ge 0$ we have $(\hat{x}_{\bar{I}z}^h x_{\bar{I}z}^h)^t (\hat{x}_{\bar{I}z}^h x_{\bar{I}z}) \le -\rho_h \nabla \hat{f} (x_{\bar{I}z}^h)^t (\hat{x}_{\bar{I}z}^h x_{\bar{I}z})$.

Lemma 4 If $\tilde{x}_{\bar{I}_k}^k = x_{\bar{I}_k}^k$, x^k is a K-T point of (p).

Lemma 5 For any $x_{\bar{l}} \ge 0$, the inequality

$$f(x^{k+1}) - f(x^k) \leq \frac{1}{4} \rho_{k}^{-1} \{ \|x_{\bar{I}_{k}}^{k} - x_{\bar{I}_{k}}\|^{2} - \|x_{\bar{I}_{k}}^{k+1} - x_{\bar{I}_{k}}\|^{2} \} + \frac{1}{2} \lambda_{k} \nabla \bar{f}(x_{\bar{I}_{k}}^{k})^{t} (x_{\bar{I}_{k}} - x_{\bar{I}_{k}}^{k})$$
holds.

Now It is obvious that there exists the step size λ_k satisfying (5) of the algorithm. Set $x_{\bar{l}k} = x_{\bar{l}}^k$ in Lemma 5, we have

Lemma 6 $\frac{1}{4}\rho_{k}^{-1}\|x_{\bar{l}_{k}}^{k+1}-x_{\bar{l}_{k}}^{k}\|^{2} \leqslant f(x^{k})-f(x^{k+1})$. Hence $f(x^{k})$ is always not increasing as $k \to \infty$.

Let $R'_k = \{x_{\bar{I}_k} \ge 0 \mid \bar{f}(x_{\bar{I}_k}) < \bar{f}(x_{\bar{I}_k}^k)\}$. If f(x) is pseudo-convex, then for $x_{\bar{I}_k} \in R'_k$ we have

$$\nabla \bar{f}(x_{\bar{I}_k}^k)^{\dagger}(x_{\bar{I}_k} - x_{\bar{I}_k}^k) = \nabla f(x^k)^{\dagger}(x - x^k) < 0$$

Hence we deduce the following

Lemma 7 If f(x) is pseudo-convex, then

$$f(x^{h+1}) - f(x^h) < \frac{1}{4} \rho_h^{-1} \{ \|x_{\bar{I}_k}^h - x_{\bar{I}_k}\|^2 - \|x_{\bar{I}_k}^{h+1} - x_{\bar{I}_k}\|^2 \}$$

holds for any $x: x_{\bar{I}*} \in R'_{k}$.

Lemma 8 Given any a: Aa = 0, for any k, $a = (a_{Ix}^t, a_{\overline{I}x}^t)^t$ there exist two constants $\mu_1^k \ge \mu_2^k > 0$ which depends on I_k and is irrelevant to a such that

$$|\mu_2||a_{\bar{I}_k}||^2 \le ||a||^2 \le |\mu_1^k||a_{\bar{I}_k}||^2$$

Proof Since $||a||^2 = ||a_{\bar{I}_k}||^2 + ||a_{I_k}||^2 = a_{\bar{I}_k}^t \operatorname{Ea}_{\bar{I}_k} + a_{\bar{I}_k} (T^{\bar{I}_k}(I_k))^t T^{\bar{I}_k} (I_k) a_{\bar{I}_k} = a_{\bar{I}_k}^t (E + B_k) a_{\bar{I}_k}$ where E is a unit matrix $(n-m) \times (n-m)$, E and $B_k = T^{\bar{I}_k} (I_k)^t T^{\bar{I}_k} (I_k)$ are both positive definite matrix. Let μ_1^k and μ_2^k be the maximum and minimum eigenvalues of matrix $E + B_k$ respectively, the result is followed.

Theorem 1 Assume that (H1) and (H2) are satisfied, and that $\{\rho_k\}$ is a bounded sequence. Let x^1 be an arbitrary feasible solution of (P). Then either the algorithm leads to a K.-T. point in a finite number of steps, or every cluster point of $\{x^k\}$ generated by it is a K.-T. point.

The proof is similar to that of Theorem 1 in [4].

The total number of pivotal operations is finite if there exist an integer $k_0 \ge 0$, a basis I_* such that $I_k = I_*$ for all $k \ge k_0$. From Lemma [3] and [4] we obtain Theorem 2.

Theorem 2 Assume that (H1) and (H2) are satisfied, f(x) is pseudo-convex and there exist B>b>0 such that $B \geqslant \rho_k \geqslant b$, then either the algorithm leads to $a \in K$. -T. point in a finite number of steps or the algorithm generates a sequence $\{x^k\}$ satisfying the following property:

- (1) If $R^*
 otin \phi$, the total number of pivotal operations is finite, then there exist a positive integer k_0 , a basis I_* and $\beta > 0$ such that $||x_{\bar{I}_*}^k x_{\bar{I}_*}||^2 + \beta f(x^k)$ is monotone decreasing for $k \geqslant k_0$ where $x \in R^*$;
- (2) The necessary and sufficient condition for $R^* \neq \phi$ and the total number of pivotal operations being finite is that the sequence $\{x^k\}$ is convergent.

Proof If there exists a k such that $\hat{x}^k = x^k$, then x^k is a K. – T. point of (P), and an optimal solution of (P) too.

Now we suppose that $\tilde{x}^k \neq x^k (k=1,2,\cdots)$. From the condition of (1), there exist a positive integer k_0 and a basis I_* such that

$$R' = \{x_{\bar{I}*} | x \in R^*\} \subset R'_k$$

holds for all $k \ge k_0$. From Lemma 7, when $x \in \mathbb{R}^*$

$$f(x^{k+1}) - f(x^k) < \frac{1}{4} \rho_k^{-1} \{ \| x_{\bar{I}_k}^k - x_{\bar{I}_k} \|^2 - \| x_{\bar{I}_k}^{k+1} - x_{\bar{I}_k} \|^2 \}$$

holds. Take $\beta = 4B$, then $4\rho_k \leqslant \beta$. From the above inequality we have

$$\|x_{\bar{I}_{\bullet}}^{k+1} - x_{\bar{I}_{\bullet}}\|^{2} + \beta f(x^{k+1}) < \|x_{\bar{I}_{\bullet}}^{k} - x_{\bar{I}_{\bullet}}\|^{2} + \beta f(x^{k})_{\bullet}$$

Secondarily, we shall prove (2). The sufficiency can be proved as follows. Suppose that $\lim_{k\to\infty} x^k = x^*$, then we know that the total number of pivotal operations is finite from Theorem 7 in [3], and x^* is a K - T, point from Theorem 1. Since f(x) is pseudo-convex, then x^* is an optimal solution i. e. $R^* \neq \phi$. The proof of the necessity is similar to that of Theorem 3 in [4].

In order to estimate the rate of convergence we must assume further that (H3) f(x) is second-order continuously differentiable.

Let $x^k \in R$, I_k is a basis, set

$$\lambda'_{k} = \min_{i \in I_{k}} x_{i}^{k} \left(\max_{i \in I_{k}} \| T_{i}^{\bar{I}_{k}}(I_{k}) \| \right)^{-1}$$
(3.1)

$$\Omega_{k} = \{x \mid x_{\bar{I}_{k}} \geqslant 0, \quad x \in \mathbb{R}, \quad \|x_{\bar{I}_{k}} - x_{\bar{I}_{k}}^{k}\| \leqslant \lambda_{k}'\}$$

$$B_{k} = (T^{\bar{I}} \quad (I_{k}))^{t} T^{\bar{I}_{k}} (I_{k})$$
(3.2)

To estimate a minimal positive integer S_k satisfying

$$S_k \geqslant n \|E + B_k\| \max_{1 \le i \le j \le n} \max_{x \in \Omega_k} \left| \frac{\partial^2 f(x)}{\partial x_i \partial x_j} \right|$$
 (3.3)

where E is a $(n-m) \times (n-m)$ unit matrix, take

$$\rho_{k} = \min \left\{ \lambda_{k}' \| \nabla \bar{f}(x_{\bar{j}_{k}}^{k}) \|^{-1}, \ S_{k}^{-1} \right\}$$
 (3.4):

We assume further that

 (H_4) f(x) is a convex function.

(H5) f(x) is a strong convex function i. e. there exists $\delta > 0$ such that

$$\delta \|\mathbf{y}\|^2 \leqslant \mathbf{y}^t \nabla^2 f(\mathbf{x}) \mathbf{y}$$

holds for all $y \in E^n$, $x \in R$, where $\nabla^2 f(x)$ denotes the matrix of second-order differentiative of f at x.

 $\nabla^2 f(x)$ is a symmetric nonnegative matrix if (H4) is satisfied. Hence the maximal absolute value among its elements surely appears on its diagonal, thus S_k can be estimated by a simpler formula:

$$S_k \geqslant n \|E + B_k\| \max_{1 \leq i \leq n} \max_{x \in \mathcal{Q}_k} \left| \frac{\partial^2 f(x)}{\partial x_i^2} \right|$$
 (3.3')

If f(x) is convex, estimating S_k by (3.3) is equivalent to estimating S_k by (3.3'). But the quantity of computing by (3.3') is much smaller. Therefore S_k is estimated by (3.3') if f(x) is convex; otherwise S_k is estimated by (3.3).

In lemma 9—14 assume that (H1) and (H3) are satisfied and ρ_k is defined by (3.1)—(3.4).

Lemma 9 $\mathfrak{F}^k \in \mathbb{R}$ for $k = 1, 2, \cdots$

Proof From (3.1) and (3.3)

$$\widetilde{x}_{i}^{k} = x_{i}^{k} - T_{i}^{I*}(I_{k}) \left(\widetilde{x}_{I_{k}}^{k} - x_{I_{k}}^{k} \right) \geqslant x_{i}^{k} - \| T_{i}^{I_{k}}(I_{k}) \| \rho_{k} \| \nabla \widetilde{f}(x_{I_{k}}^{k}) \| \\
\geqslant x_{i}^{k} - \min_{i \in I_{k}} x_{i}^{k} \geqslant 0 \tag{3.5}$$

hold for $i \in I_k$.

Lemma 10
$$f(\widetilde{x}^k) - f(x^k) \leq \nabla \overline{f}(x_{\overline{I}_k}^k)^t (\widetilde{x}_{\overline{I}_k}^k - x_{\overline{I}_k}^k) + \frac{1}{2} \rho_k^{-1} \|\widetilde{x}_{\overline{I}_k}^k - x_{\overline{I}_k}^k\|^2$$
.

Proof Applying Taylor's theorem we have

$$f(\widehat{x}^{k}) - f(x^{k}) = \nabla f(x^{k})^{t} (\widehat{x}^{k} - x^{k}) + \frac{1}{2} (\widehat{x}^{k} - x^{k})^{t} \nabla^{2} f(Z^{k}(\theta_{k})) (\widehat{x}^{k} - x^{k})$$

$$\leq \nabla \overline{f}(x_{\overline{I}_{k}}^{k})^{t} (\widehat{x}_{\overline{I}_{k}}^{k} - x_{\overline{I}_{k}}^{k}) + \frac{1}{2} n \left\{ \max_{1 \leq i \leq j \leq n} \max_{0 \leq k \leq 1} \left| \frac{\partial^{2} f(Z^{k}(\lambda))}{\partial x_{i} \partial x_{j}} \right| \right\} \|E + B_{k}\| \|\widehat{x}_{\overline{I}_{k}}^{k} - x_{\overline{I}_{k}}^{k}\|^{2},$$

$$z^{k}(\theta_{k}) = x^{k} + \theta_{k} (\widehat{x}^{k} - x^{k}), \quad 0 \leq \theta_{k} \leq 1;$$

$$z^{k}(\lambda) = x^{k} + \lambda (\widehat{x}^{k} - x^{k}), \quad 0 \leq \lambda \leq 1.$$

$$(3.6)$$

where

From (3.2) we have $\tilde{x}^k \in \Omega_k$, $Z^k(\theta_k) \in \Omega_k$, $Z^k(\lambda) \in \Omega_k$, and from (3.3) we have

$$n\left\{\max_{1\leq i\leq j\leq n} \max_{0\leq k\leq 1} \left| \frac{\partial^2 f(Z^k(\lambda))}{\partial x_i \partial x_j} \right| \right\} ||E+B_k|| \leq \rho_k^{-1},$$

the result is followed.

Lemma 11

$$x^{k+1} = \tilde{x}^k \quad (k = 1, 2, \cdots)$$
.

Proof From Lemma 10, Lemma 3(1) and Lemma 9, we have $\lambda_h = 1$ for all k_i

Lemma 12 (1) $\rho_k \leq 1$;

(2) If $\{x^k\}$ is bounded, then $\inf_{k} \rho_k > 0$

Proof (1) is obvious.

(2) In view of $\{x^k\}$ being bounded and the number of different basis being finite, $\{\lambda'_k\}$ must be bounded; And from (3.3), the continuity of $\nabla f(x)$ and $\nabla^2 f(x)$ there exists S>0 such that

$$S_k \leqslant S, \qquad \|\nabla \bar{f}(x_{\bar{I}_k}^k)\| \leqslant S$$

holds for any k. According to (3,1), (3,4) and Lemma 2, we have

$$\rho_{k} \geqslant S^{-1} \min \{ (\inf_{k} \min_{i \in I_{k}} x_{i}^{k}) (\max_{I_{k}} \max_{i \in I_{k}} \|T_{i}^{\bar{I}_{k}}(I_{k})\|)^{-1}, 1 \}$$

$$\inf \rho_{k} > 0$$

hence

Lemma 13 If (H4) is satisfied, then

$$f(x^{k+1}) - f(x) \leq \frac{1}{2} \rho_{k}^{-1} \{ \|x_{\bar{I}_{k}}^{k} - x_{\bar{I}_{k}}\|^{2} - \|x_{\bar{I}_{k}}^{k+1} - x_{\bar{I}_{k}}^{r}\|^{2} \}$$

holds for any $x \in R$.

Proof Because of the convexity of f(x)

$$f(x^{k}) - f(x) \leq \nabla f(x^{k})^{t} (x^{k} - x) = \nabla \bar{f}(x^{k}_{\bar{I}_{k}})^{t} (x^{k}_{\bar{I}_{k}} - x_{\bar{I}_{k}})$$

holds for any x. Because $x^{k+1} = \tilde{x}^k$, we can add this inequality to the inequality in Lemma 10:

$$\begin{split} f(x^{k+1}) - f(x) & \leq \nabla \bar{f}(x_{\bar{I}_k}^k)^t (x_{\bar{I}_k}^{k+1} - x_{\bar{I}_k}) + \frac{1}{2} \rho_{k}^{-1} \|x_{\bar{I}_k}^{k+1} - x_{\bar{I}_k}^k\|^2 \\ & = \frac{1}{2} \rho_{k}^{-1} \{ \|x_{\bar{I}_k}^k - x_{\bar{I}_k}^k\|^2 - \|x_{\bar{I}_k}^{k+1} - x_{\bar{I}_k}^k\|^2 \} \,, \end{split}$$

Theorem 3 Assume that (H1), (H3) and (H4) are satisfied. If the parameters ρ_k are defined by (3,1)—(3,4), then $\lambda_k = 1$ for all k, and either the algorithm leads to a optimal solution in a finite number of steps, or the algorithm generates an infinite sequence $\{x^k\}$ satisfying the following properties:

- (1) If $R^*
 ightharpoonup \phi$ and the total number of pivotal operations is finite, then there exist a positive integer k_0 , a basis I_* such that the sequence $\{\|x_{\bar{I}_*}^k x_{\bar{I}_*}\|\}$ is monotone decreasing for $k \geqslant k_0$; $(x \in R^*)$
- (2) The necessary and sufficient condition for $R^* \neq \phi$ and the total number of pivotal operations being finite is that the sequence $\{x^k\}$ is convergent.

Proof From Lemma 11, $\lambda_k = 1$. If $x_{k+1} = x_k$ $(k = 1, 2, \cdots)$, then (1) is proved by applying Lemma 13. Hence $\{x^k\}$ is bounded, and we can apply Lemma 12 to show

(3.8)

that ρ_k are satisfied with conditions of Theorem 2. Thus the other part of this theorem can be obtained by Theorem 2;

Lemma 14 Assume that $\lim_{x\to a} x^k = x^*$; If f(x) is convex in a neighborhood of x^*

$$N(x^*) = \{x \mid ||x - x^*|| \leq \varepsilon\} \quad (\varepsilon > 0),$$

then there exist a positive integer k, a basis I, such that

$$f(x^{h+1}) - f(x) \leq \frac{1}{2} \rho_{h}^{-1} \{ \|x_{\bar{I}_{\bullet}}^{h} - x_{\bar{I}_{\bullet}}\|^{2} - \|x_{\bar{I}_{\bullet}}^{h+1} - x_{\bar{I}_{\bullet}}\|^{2} \}$$

for all $k \ge k_0$ and all $x \in N(x^*) \cap R_i$

Proof There exists k_1 such that $x^k \in N(x^*)$ for all $k \ge k_1$, and by virtue of convexity of f(x) in $N(x^*)$, the inequality in Lemma 10 and applying the argument analogous to those in Lemma 13 we obtain

$$f(x^{k+1}) - f(x) \leqslant \frac{1}{2} \rho_{k}^{-1} \{ \|x_{\bar{I}_{k}}^{k} - x_{\bar{I}_{k}}\|^{2} - \|x_{\bar{I}_{k}}^{k+1} - x_{\bar{I}_{k}}\|^{2} \}.$$

According to the convergence of $\{x^k\}$ and the total number of pivotal operations being finite, there exists $k_0 \gg k_1$ such that $I_k = I_{\oplus}$ for all $k \gg k_0$; This proves the lemma:

Theorem 4 Assume that (H1) and (H3) are satisfied, the parameters ρ_k are defined by (3.1) - (3.4), $\lim_{k \to \infty} x^k = x^*$ and $\nabla^2 f(x^*)$ is positive definite. Then there exist $0 < \alpha < 1$, a basis I_* , a positive integer k_0 such that

$$\|x_{\tilde{l}_a}^{k+1} - x_{\tilde{l}_a}^*\| \leq \alpha \|x_{\tilde{l}_a}^k - x_{\tilde{l}_a}^*\|$$

holds for all $k \ge k_0$.

Proof From (H3) and $\nabla^2 f(x^*)$ being positive definite, there exist $\varepsilon > 0$ and $\delta > 0$ such that

$$v^{\dagger}\nabla^{2}f(x)v \geqslant \delta \|y\|^{2} \tag{3.7}$$

holds for each $x \in N(x^*) = \{x \mid ||x - x^*|| < \varepsilon\}$ and $y \in E^n$. Hence from Lemma 14, there exist positive integer k_0 , a basis I_* such that

$$x^k \in N(x^*)$$
 for $k \geqslant k$

and $f(x^{k+1}) - f(x) \le \frac{1}{2} \rho_h^{-1} \{ \|x_{\bar{I}_{\bullet}}^k - x_{\bar{I}_{\bullet}}\|^2 - \|x_{\bar{I}_{\bullet}}^{k+1} - x_{\bar{I}_{\bullet}}\|^2 \}$

holds for $x \in N(x^*)$ and $k \geqslant k_0$; By applying $\nabla f(x^*)^t (x - x^*) \geqslant 0$ $(x \in R)$, $x_{\lambda} = x^* + \lambda (x^{k+1} - x^*) \in N(x^*)$ $(k \geqslant k_0)$, Taylor's theorem, (3.7) and Lemma 8 we have

$$f(x^{k+1}) - f(x^{*}) = \nabla f(x^{*})^{t} (x^{k+1} - x^{*}) + \frac{1}{2} (x^{k+1} - x^{*})^{t} \nabla^{2} f(x_{\lambda}) (x^{k+1} - x^{*})$$

$$\geq \frac{1}{2} \delta \|x^{k+1} - x^{*}\|^{2} \geq \frac{1}{2} \delta \mu_{2}^{k} \|x_{\bar{I}_{\bullet}}^{k+1} - x_{\bar{I}_{\bullet}}^{*}\|^{2}$$

$$\geq \frac{1}{2} \delta \mu_{2} \|x_{\bar{I}_{\bullet}}^{k+1} - x_{\bar{I}_{\bullet}}^{*}\|^{2}$$
(3.9)

where $\mu_2 = \inf_{h} \{\mu_2^h\} > 0$. Compare (3.8) and (3.9) with the fact that $\rho_h \gg b > 0$,

$$||x_{\bar{I}_{\bullet}}^{k+1}-x_{\bar{I}_{\bullet}}^{*}|| \leq \alpha ||x_{\bar{I}_{\bullet}}^{k}-x_{\bar{I}_{\bullet}}^{*}||$$

hold for $k \ge k_0$, where $0 < a = (1 + \delta \mu_2 b)^{-\frac{1}{2}} < 1$

Theorem 5 Assume that (H1), (H3) and (H5) are satisfied, the parameters ρ_k are defined by (3.1)-(3.4). Let x^1 be an arbitrary feasible solution, then either the algorithm leads to an optimal solution in a finite number of steps, or the algorithm generates an infinite sequence $\{x^k\}$ converging to the unique optimal solution of (P), and there exist a basis I_* $0 < \alpha < 1$, a positive integer k_0 such that

$$||x_{\bar{I}_{a}}^{h+1}-x_{\bar{I}_{a}}^{*}|| \leq \alpha ||x_{\bar{I}_{a}}^{h}-x_{\bar{I}_{a}}^{*}||$$

hold for all $k \ge k_0$.

Proof From (H5) R^* contains a unique point x^* , and

$$E = \{x \mid x \in R, f(x) \leq f(x^1)\}.$$

is bounded. If the sequence $\{x^k\}$ is infinite, $\{x^k\}$ itself must converge to x^* from Theorem 1. The rate of convergence is obtained from Theorem 4.

Acknowledgement The author is grateful to professor Wang Changyu for his instructions.

References

- [1] Wolfe, P., Methods of Nonlinear Programming, Recent Advances in Mathematical Programming (Eds. Graves-Wolfe), McGraw-Hill (1963).
- [2] Wolfe, P., On the Convergence of Gradient Methods Under Constraints, IBM Journal of Res, and Dev., 16 (1972), pp. 407-411.
- [3] Yue Minyi and Han Jiye, A New Reduced Gradient Method, SCIENTIA SINICA, Vol. XXII, No. 10, pp. 1099-1113.
- [4] Wang Changyu, On the Convergence of An Improved Reduced Gradient Method, KEXUE TO-NGBAO, 17(1982), pp. 1030-1033.
- [5] Wang Changyu, A New Pivotal Operation Method and the Simplification of Levitin-Polyak Gradient Projection Method And Its Convergent Property, Acta Mathematicae Applicatae Sinica, Vol. 14, No. 1(1981), pp.37-52.