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Abstract

An improved reduced gradient method was proposed in [4] to solve the nonli-
near programming (P) with linear constraints:

(P) meizlf(m R={x€E*|AX=b, x=0} bEE",
X

In this paper we introduce parameters p, which is the skill used in [5] to the al-
gorithm of [4] to obtain a reduced gradient method which is linearly convergent
under the conditions of R being non-degenerate, f being second-order continuously
differentiable and strong convex,

I ~Hypotheses and Notations

We shall study the following nonlinear programming with linear constraints:
(P) r;leigf(x) R={x|Ax=b, x>0, XCE"}

where A is a mxn matrix (m<n), bEE", E" and E" are n-dimension and m-dj-
mension Euclidean 'space respectively. Suppose that the rank of A is equal to m.
We assume that _

(H1) R>¢, every extreme point of the polyhedron R is non-degenerate,

(H2) the function f: E"—>E! is real-valued first-order continuously differenti-
able in E". '

R* denotes the set of opfimal solutions of (P). A] is the submatrix of A con-
sisting of elements a,;, (i,j) €LxJ, where J={1,-, n}, L<{1,..., m}. If L={1,
...,m}, Al is denoted by A’ for brief. 1<{1,-..-,n} is called a basis if both the
number of elements in I and the rank of AT are equal to m. I={1,--,n}\I. T() =
(ADA, TTU) = (AD"LAT. t() = (AD) " 'b. T] ) denotes the i row vector in T7 (I),

T! denotes the (i,j) element in T7(I).
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V.f(x) =(aé§::) ’ iEI)and Vif(x) =(61;§:) , ]E€T1) denote column vectors, x

is a column vector, the transpose x' is a row vector,
If x=(x{,% {)'ER, then for any basis I, we have x,=t(I) - T7(I)xj,
We define fxp) =f@A) -TT D) %3, X5)
and V§(xy) is called the “reduced gradient”, which is equal to
Vix3) =Vif(x) =TIU)'V,f(x).

I Algorithm

We perform pivotal operations given in [3] and have the lemma ].

Lemma 1 If (H1) is satisfied, then for any feasible point x &R, any basis I,
any positive number <1 and any index set D7, the pivotal process must termi-
nate after at most m times of pivotal operations. Furthermore, provided that J,,
e,, and D, denote the final I, ¢ and D respectively, we have &,<1, D,CJ, and

min {x.IiEIp}> ezp ’

Now we shall give an iterative algorithm of the reduced gradient method to
solve the problem (P),

Algorithm Starting from an arbitrary feasible point x! CR, an arbitrary basis
I,, a positive number £,<{1 and an index set D, =¢, let k=1.

(1) Perform the pivotal operations for (x*, I, ,, e,.;, D,.,), set I,=1I,, &,=
&,, D,=D,, we get (x*, I, &, D,) and go on to (2),

(2) Compute T(I,) and Vj (x;‘), and go on to (3).

(3) given p, >0, and go on to (4).

(4) Define vector &;‘;

- k
. of(x3) |

0 1fx';<p,.~%_’—'—~. jE L.

N H

x’;= a}(xk) af( Ic)
ol X7
§_ ___15__ i k _._[_k_
xk—p, 5%, if x,>P,. o%; » iejr
If §;.=";;' stop; otherwise go on to (5).
() Let A =td) -Th A 22,

XE*tl=xk 4 4, (RF ~ xF)

1

where A, is the maximum of the sequence 1, %,...,—z—r, ... which satisfy

k41 By B+l _ M 5,k K Lk
x**1eR, F(x*) ~f(x*1) = 5 vf (xih)' (xﬂ. x;)
Set k=k+1, then go back to (1).

We obtain the following lemma from the proof of the proposition 4 in [3];
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Lemma 2 There exists a positive integer k, such that ¢, =¢,, for all k>k,.

As presented above, assuming that (H1) and (H2) are satisfied in the follow-
ing lemmas, we obtain lemmas 3-5 similar to lemmas 2-3 in [4].

Lemma3 Let ¢(x;,) = ||x7,,-x;‘+pkvf (x;.) [|?, then

¢)) %;k is the solution of min {<p(xh) |%5,2=0};

(2) For any x,,>0 we have (&;k—x;‘)'(ﬁ;'-—xi.)<—ﬂkvf (x;')'(ﬁ’;,‘—xi.).

Lemma 4 If &’;fx , X* is a K-T point of (p).

k
iz
Lemma s For any x3,=0, the inequality
1 . k k+1 1 - ok A
feeket) ~ fa <o llx} —xmll2 - (%5 —xnl?) + GAVEGE )T Ger —})
holds.
Now It is obvious that there exists the step size A, satisfying (5) of the alge-

rithm. Set x;,=x;k in Lemma 5, we have

Lemma ¢ %p;lnx;:’

-x; 12<<f(x*) — f(x**1), Hence f(x*) is always not in-
k
creasing as k—»co,
Let R} ={x7,=0]f(x3,) <f (x;')}, If f(x) is pseudo-convex, then for x;, €R}
we have

VI (x5, = x5 ) =VHED ! (- 29 <0

Hence we deduce the following
Lemma 7 If £(x) is pseudo-convex, then

Feeth - £ <ol —xml? =yt ~xnll®)

holds for any x: xj, € R;.

Lemma 8 Given any a: Aa=0, for any k, a= (aj,, a;‘)' there exist two con-
stants #4=p4>0 which depends on ], and is irrelevant to ¢ such that

#ollez.lI2<|la] 2 <ptliaz, ) ®

Proof Since ||a|* = |laz,|* + laz,]|* = &} Ear, +a7,(TT* (L) 'TT (L)ar, =0} (E+Byar,
where E is a unit matrix (n-m) X (n~m), E and B,=T7.{,)!T1.(I,) are both
positive definite matrix. Let g% and uf be the maximum and minimum eigenva-
lues of matrix E+ B, respectively, the result is followed,

Theorem 1 Assume that (H1) and (H2) are satisfied, and that {p,} is a boun-
ded sequence, Let x! be an arbitrary feasible solution of (P). Then either the

algorithm leads to a X.—-7T. point in a finite number of steps, or every cluster
pdint of {x*} generated by it is a K.-T. point,
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The proof is similar to that of Theorem 1 im [4].

The total number of pivotal operations is finite if there exist an integer k,>
0, a basis I, such that [, =1, for all k=k,. From Lemma [3] and [4] we obtain
Theorem 2.

Theorem 2 Assume that (H1) and (H2) are satisfied, f(x) is pseudo-convex
and there exist B>b>>(0 such that B=p,>=b, then either the algorithm leads to a
K.-T. point in a finite number of steps or the algorithm generates a sequence {x*}
satisfying the following property:

(1) If R*a:-¢, the total number of pivotal operations is finite, then there‘ ex-
ist a positive integer k,, a basis I, and B>>0 such that }|x;.—-x;,]|2+13f (x*) is mo-
notone decreasing for k=k, where x&R*;

(2) The necessary and sufficient condition for R*=¢ and the total number of
pivotal operations being finite is that the sequence {x*} is convergent.

Proof If there exists a k such that %*=x*, then x* is a K. - T. point of (P),
and an optimal solution of (P) too.

Now we suppose that Xf2:x*(k=1,2,-.-). From the condition of (1). there ex-
ist a positive integer k, and a basis Iy such that

R’ ={x1,|XxER*}CR;
holds for all k>>k,. From Lemma 7, when xER*

Flertty = o) <pop el - xp 2= e =12}

holds. Take B = 4B, then 4p,<<B. From the above inequality we have

Il Tt —xr 2+ B faer ey <fxy - g, 2+ BF (6
Secondarily, we shall prove (2). The sufficiency can be proved as follows.

Suppose that lim x* =x* then we know that the total number of pivotal operations

k=

is finite from Theorem 7 in [3], and x* is a K. —T. point from Theorem 1. Since
f(x) is pseudo-convex, then x* is an optimal solution .i, e. R*x¢. The proof of
the necessity is similar to that of Theorem 3 in [4].

II Rate of convergence

In order to estimate the rate of convergence we must assume further that
(H3) f(x) is second-order continuously differentiable.
Let x*€R, I, is a basis, set

= min x4 ( max |77, ) (3.1)
) i€Elx i€lx ' . )
0, = {¥|x7,>0, *E€R, |x7,—x; | <a;) 3.2)

B, = (TT @I))'TT* Iy
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To estimate a minimal positive integer §, satisfying

0%f(®) (3.3)

=nlE+ max max
Sk \E Blz"l % 9%,

<ji<j<n X €Qx

where E is a (n—m) x (n—m) unit matrix, take

p=min{A,IwFcel ) [7t, it} (3. 4)

We assume further that

(H4) £(x) is a convex function.

(H5) f(x) is a strong convex fuuction i, e, there exists 4>0 such that

SV E<y'Vif(x)y |
holds for all yCE", x€ R, where V2f(x) denotes the matrix of second-order differ-
entiative of f at x,

V2f(x) is a symmetric nonnegative matrix if (H4) is satisfied, Hence the max-
imal absolute value among its elements surely appears on its diagonal, thus §, can
be estimated by a simpler formula:

9% x)
- 9x}

If f(x) is convex, estimating §, by (3.3) is equivalent to estimating §, by (3.3/).

S;=>n|E+ B, max max (3.3")

1<i<n xX€Qx

But the quantity of computing by (3.3’) is much smaller. Therefore S; is estimated.
by (3,3) if f(x) is convex; otherwise S, is estimated by (3.3).

In lemma 9—14 assume that (H1) and (H3) are satisfied and p, is defined by
(3.1)— (3,4,

Lemma 9 %*€R for k=1,2, .-+

Proof From (3,1) and (3,3)

gh=xt -7y &, x5 ) =%t - | TAD 0] VF )

=x% - minxt>=0 (3.5
i€lx

hold for i<y,
o ; " L oiis
Lemma 10 f(%*) - f(x") <Vf(x;h)'(x;x —x7,) + 50! “";f";k"z'
Proof Applying Taylor's theorem we have
F(24) = F6h) =V () (3= %) + - (Rh = 30) | W2F(Z(6,)) (R - %¥)

-k & s
SV ) (5= — x5 )+—1-n{ max max
I Iy in 2 \icicjen o<ist

82 (Z2*(A))
0%:9X;

where . zk (Gk) =xk+95(§k"xk)y 0<9k<13
ZEQQ) =X HARF~xh), . 0SA<I,
From (3,2) we have %€ Q,, Z*(9,). €Q,, Z*(A) €Q,, and from (3,3) we have

o ko2
He+ Bl 1%, -] 1% (3.6
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2 k
of mex max | FLED s+ ni <o,
‘the result is followed.
Lemma 11 xktl =%k (k=1,2,.),
Proof From Lemma 10, Lemma 3(1) and Lemma 9, we have 2,=1 for all k;
Lemma 12 (1) p,<1; (2) If {x*} is bounded, then ihnf £,>0

Proof (1) is obvious,

(2) In view of {x*} being bounded and the number of different basis being fi-
mite, {A;} must be bounded; And from (3,3), the continuity of V£(x) and V*f(x)
there exists $>0 such that

Si<<S, Vil <s
holds for any k. According to (3,1), (3.4) and Lemma 2, we hava

=8 'min{(inf minx*) (max max ||T?'(I,,)||)'1,1}
k 1

i€lx Ix i€z

thence inf p,>0
]
Lemma 13 If (H4) is satisfied, then
foorn) - f <ot (k) - xnl - I - %7
Tholds for any x&R.
Proof Because of the convexity of f(x)
fO%) = £ () SVFOM) (b= %) =VF (] ) ' (%], = %1,)
holds for any x, Because x**! =%, we can add this inequality to the inequality in
Lemma 10;

k1 1

X7.) +— A+l
7,. Ix 2

FOxR*Y) — f(x) <VE(x® ) (x Rl P
I, T4 Ta

IR L AR

Theorem 3 Assume that (H1), (H3) and (H4) are satisfied; If the parameters
0, are defined by (3,1)—(3,4), then A,=1 for all k, and either the algorithm
Jleads to a optimal solution in a finite number of steps, or the algorithm generates
-an infinite sequence {x*} satisfying the following properties:

(1) If R*2¢ and the total number of pivotal operations is finite, then there

-exist a positive integer k,, a basis I, such that the sequence {IIx;.—x;,u} is mono-
‘tone decreasing for k>k,: (XER®)

(2) The necessary and sufficient condition for R*::¢ and the total number of
‘pivotal operations being finite is that the sequence {x*} is convergent,

Proof From Lemma 11, A,=1. If x,,,%x,(k=1,2,...), then (1) is proved by
:applying Lemma 13. Hence {x*} is bounded, and we can apply Lemma 12 to show
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that p, are satisfied with conditions of Theorem 2, Thus the other part of this th-
eorem can be obtained by Theorem 2;
Lemma 14 Assume that lim x*=x*; If f(x) is convex in a neighborhood of x*

I ]
N@&* = {x]| |x-x*|<e} (>0,
then there exist a positive integer k,, a basis I, such that
foi} = f o <p7 {Ieh ~ 1l 2= xf T = %70
for all k=k, and all x&N(x*) NR;
Proof There exists k, such that x*cN(x* for all k>k,, and by virtue of

convexity of f(x) in N(x*), the inequality in Lemma 10 and applying the argument
analogous to those in Lemma 13 we obtain

fotty - f(x) < p.'{llx —xp 02 - IIx‘“ ~xp 0%

According to the convergence of {x*} and the total number of pivotal operations
being finite, there exists k,>k, such that I, =I4 for all k>>k,; This proves the lem-
ma;

Theorem 4 Assume that (H1) and (H3) are satisfied, the parameters p, are
defined by (3,1)—(3,4), lim x*=x* and v2f(x*) is positive definite; Then there
exist 0<<a<{1, a basis I, ah;oositive integer k, such that

ety - e, -7, |
holds for all k=k,;

Proof From (H3) and V2f(x*) being positive definite, there exist e>0 and
4>0 such that

y'vify=sly)? (3.7
holds for each x €N (x*) = {x| |x - x*|<e} and y€E". Hence from Lemma 14, there
exist positive integer k,, a basis I, such that

x*c N(x* for k=k,

h+1

and foaet) - f <3p3 ks, — %l 2 = ey %700 (3.8)

holds for xEN(x*) and k>k,; By applying Vf(x*)!(x-x*)>=0 (XER), X;=x*+
A(xF*l_x*) CN(x*) (k>=k,), Taylor’s theorem, (3.7) and Lemma 8 we have

FOAOI) = FG%) = VF(e%) (L = x%) L (R X PR (x,) (T - x%)

1 k+1
S L A L=t T et
>, I - |12 (3.9)
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where pt, = inf{s4}>0, Compare (3,8) and (3,9) with the fact that p,>b>0,
k

bepl -7 I <ale} - )
hold for k>=k,, where 0<la= (1 +duzb)-é<1

Theorem 5 Assume that (H1), (H3) and (H5) are satisfied, the parameters p,
are defined by (3,1)—(3.4). Let x! be an arbitrary feasible solution, then either
the algorithm leads to an optimal solution in a finite number of steps, or the
algorithm generates an infinite sequence {x*} converging to the unique optimal so-

lution of (P), and there exist a basis I, 0<<e<(1, a positive integer k, such that

A+l * k *
bz, -*l<elx; -x)

hold for all kx=k,,

Proof From (H5) R*® contains a unigque point x*, and
E={x|XxER, f(x)<f(x1)},

is bounded, If the sequence {x*} is infinite, {x*} itself must converge to x* from
Theorem 1, The rate of convergence is obtained from Theorem 4,
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