Generalized Inverses of a Partitioned Matrix*

Dang Songshi (党诵诗)

(Zhengzhou Institute of Geodesy and Cartography)

Let $A\{i,j,\dots,k\}$ be the set of matrices $X = A^{(i,j,\dots,k)}$ which satisfy equations $\langle i \rangle, \langle j \rangle, \dots, \langle k \rangle$ from among $\langle 1 \rangle$ AXA = A, $\langle 2 \rangle$ XAX = X, $\langle 3 \rangle$ $(AX)^* = AX$, $\langle 4 \rangle$ $(XA)^* = XA$. G^* denotes the conjugate transpose of G, $A^* = A^{(1,2,3,4)}$. $\mathcal{H}(A)$ and $\mathcal{N}(A^*)$ denote the range of A and the null space of A^* , respectively. In this paper, the formula for computing inverse $[A(A_0B_1)]^+$ is presented, i. e.,

$$[A(A_0B_1)]^+ = \begin{bmatrix} A^+(I - A_0\beta_1)(I - B_1\tilde{J}^+) \\ \beta_1(I - B_1\tilde{J}^+) \\ \tilde{J}^+ \end{bmatrix}$$
(1_a)

Where $\mathcal{H}(A_0) \subseteq \mathcal{H}(A)$, $\mathcal{H}(A) \cap \mathcal{H}(B_1) = \{0\}$, $\tilde{J} = (I - AA^+)(I - A_0\beta_1)B_1$, $\beta_1 = (I + A_0^*A^{*+}A^+A_0)^{-1}A_0^*A^{*+}A^+$.

Now we put $B = (A_0 B_1)$ in (1_a) , then $\{0\} \subseteq \mathcal{H}(A) \cap \mathcal{H}(B) \subseteq \mathcal{H}(B)$. Specially, we have

$$(AB)^{+} = \begin{bmatrix} A^{+}(I - B\beta) \\ \beta \end{bmatrix}$$
 (1_b)

$$\beta = \begin{cases} (I + B^*A^{*+}A^+B)^{-1}B^*A^{*+}A^+; & \mathcal{H}(A) \cap \mathcal{H}(B) = \mathcal{H}(B) \\ [(I - AA^+)B]^+, & \mathcal{H}(A) \cap \mathcal{H}(B) = \{0\} \end{cases}$$
(1%)

Using formula (1_b) , we obtain the expressions for $M^+ = \begin{bmatrix} A & B \\ C & O \end{bmatrix}^+$ described in theorems 1—3 below, which simplify and improve the results in [1], [3], and the result in theorem 4 is extremely useful to geodetic surveying^[4].

Theorem 1 If $\mathcal{H}(AT) \cap \mathcal{H}(B) = \{0\}$, $\mathcal{H}(A^*U) \cap \mathcal{H}(C^*) = \{0\}$, then

$$M^{+} = \begin{pmatrix} D^{+} & C^{-} \\ B^{-} & -B^{+}A(I-D^{+}A)C^{+} \end{pmatrix},$$

where $T = I - C^+C$, $U = I - BB^+$, D = UAT; $B^- = B^+(I - AD^+) \in B\{1, 2, 4\}$, $C^- = (I - D^+A)C^+ \in C\{1, 2, 3\}$.

^{*} Received Mar. 17, 1983.

Theorem 2 If $\mathcal{H}(AT) \subseteq \mathcal{H}(U)$, $\mathcal{H}(A^*U) \subseteq \mathcal{H}(T)$, then

$$M^+ = \left(\begin{array}{cc} (UA)^+ & C^+ \\ B^+ & -B^+AC^+ \end{array}\right).$$

We denote the class of $m \times n$ matrices of rank r by $\mathscr{C}_r^{m \times n}$.

Theorem 3 Let $A \in \mathscr{C}_r^{m \times n}$, $B \in \mathscr{C}_{m-r}^{m \times (m-r)}$, $C \in \mathscr{C}_{n-r}^{(n-r) \times n}$, and $\mathscr{H}(A) \cap \mathscr{H}(B) = \{0\}$, $\mathscr{H}(A^*) \cap \mathscr{H}(C^*) = \{0\}$, then matrix M is nonsingular, and

$$\mathbf{M}^{-1} = \left(\begin{array}{c} \mathbf{A}^{-} & \mathbf{C}^{-} \\ \mathbf{B}^{-} & \mathbf{O} \end{array} \right).$$

Where $A^- = D^+ \in A\{1, 2\}$.

Theorem 4. Let the submatrix O in M be $(n-r) \times (m-r)$ zero matrix, $A \in \mathscr{C}_{r}^{m \times n}$. If $\mathscr{H}(B) = \mathscr{N}(A^*)$, $\mathscr{H}(C^*) = \mathscr{N}(A)$, then matrix M is nonsingular, and

$$M^{-1} = \begin{pmatrix} A^+ & C^+ \\ B^+ & O \end{pmatrix}.$$

Turning to the proof the formulae (1_a) , (1_b) . Given K = (AB), we deal separately with three cases the calculations of K^+ , namely, (I) $\mathcal{H}(A) \cap \mathcal{H}(B) = \mathcal{H}(B)$, (II) $\mathcal{H}(A) \cap \mathcal{H}(B) = \{0\}$, (III) $\{0\} \subseteq \mathcal{H}(A) \cap \mathcal{H}(B) \subseteq \mathcal{H}(B)$. For case (I), we have $J = (I - AA^+)B = O$, suppose not, there exists a vector h_0 such that $Bh_0 \neq AA^+Bh_0$, i. e., $Bh_0 \in \mathcal{H}(A) \cap \mathcal{H}(B)$, which is impossible since $\mathcal{H}(A) \cap \mathcal{H}(B) = \mathcal{H}(B)$. From this case, we see that B_1 and \tilde{J} do not occur, and then, $A_0 = B_1$, $\beta_1 = (I + B^*A^{*+}A^+B)^{-1}B^*A^{*+}A^+$, moreover, $(1_b')$ holds and (1_a) becomes (1_b) ; for case (II), we have $J \neq 0$, suppose not, $\forall h$, $Bh = AA^+Bh \in \mathcal{H}(A) \cap \mathcal{H}(B) = \{0\}$, which is impossible since $B \neq 0$. From this case, we see that A_0 and B_1 do not occur, and then, $B_1 = B$, $\tilde{J} = J$, moreover, $(1_b'')$ holds and (1_a) becomes (1_b) .

Before proving (1_a) , we discuss the special cases (1), (1). Let $K^+ = \begin{bmatrix} \alpha \\ \beta \end{bmatrix}$, then

$$A^{+}KK^{+} = A^{+}(A\alpha + B\beta). \tag{2}$$

Because $\mathscr{N}(A^+) = \mathscr{N}(A^*) \supseteq \mathscr{N}(K^*) = \mathscr{H}(I - KK^+)$, the equality $A^+(I - KK^+) = 0$ holds, i.e., $A^+ = A^+KK^+$; furthermore, because $\mathscr{H}(K^+) = \mathscr{H}(K^*)$, it is known that $\mathscr{H}(\alpha) = \mathscr{H}(A^*) = \mathscr{H}(A^+) = \mathscr{N}(I - A^+A)$, i. e., $\alpha = A^+A\alpha$. Substituting these into (2), we get $\alpha = A^+(I - B\beta)$. Next we determine β .

We observe that $KK^+ = A\alpha + B\beta = A[A^+(I - B\beta)] + B\beta = AA^+ + J\beta$, $J\beta$ is clearly Hermitian, and there exists F such that $\beta = FJ^*$, i. e., $KK^+ = AA^+ + JFJ^*$. According to $(AB) = K = KK^+K = (AA^+ + JFJ^*)(AB)$, we obtain $B = (AA^+ + JFJ^*)B$, so $J = JFJ^*B$ or $J = JFJ^*J$.

If $J\neq 0$, then we have $\beta = FJ^* = J^{(1)}$. Because of matrix K^+K is Hermitian, its submatrices $J^{(1)}A = \beta A = (\alpha B)^* = [A^+(I - B\beta)B]^*$; moreover, from the submatrices in both sides of equality $K = KK^+K$, we see that $B = AA^+(I - BJ^{(1)})B + BJ^{(1)}B$ or AA^+B $(I - BJ^{(1)}) = B(I - J^{(1)}B)$, i. e., $\forall h$, $A^+AB(I - J^{(1)}B)h = B(I - J^{(1)}B)h \in \mathcal{H}(A) \cap \mathcal{H}(B)$ $= \{0\}$, therefore, $(I - BJ^{(1)})B = 0$. To sum up, $J^{(1)}$ satisfy $J^{(1)}A = 0$. But $J^+A = 0$ since $A^+J = 0$, noticing that the uniqueness of $(AB)^+$, we must take $J^{(1)} = J^+$.

The equality $J^+A = 0$ shows that K^+K is a block diagonal matrix.

If J=0, then $\mathcal{N}(K^*)=\mathcal{N}(A^*)$ holds since $K^*=\begin{bmatrix}I\\B^*A^{*+}\end{bmatrix}A^*$, and hence, $\mathcal{N}(\beta)\supseteq\mathcal{N}(K^+)=\mathcal{N}(K^*)=\mathcal{N}(A^*)=\mathcal{H}(I-AA^+)$, i. e., $\beta(I-AA^+)=0$. Putting $d=A^*B$, it follows from the submatrices of K^*K that $\beta B=(\beta B)^*$, therefore, $\beta A=(\alpha B)^*=[A^+(I-B\beta)B]^*=[(A^+-d\beta)B]^*=(I-\beta B)d^*$, and hence $\beta B=\beta AA^+B=(I-\beta B)d^*d$ or $(I-\beta B)(I+d^*d)=I$, then we get $\beta=\beta AA^+=(I+d^*d)^{-1}d^*A^+$, i. e., $(1'_b)$ holds.

Finally, we apply (1_b) and $(1_b'')$ to matrix $K = [(AA_0)B_1]$, and apply (1_b) and $(1_b')$ to matrix (AA_0) , formula (1_a) is proved.

Furthermore, we can prove some properties of J^+ :

- (i) $\mathcal{N}(B) = \mathcal{N}(J)$ (so $\mathcal{H}(B^*) = \mathcal{H}(J^*)$); (ii) $J^+ \in B\{1, 2, 4\}$;
- (iii) $A^+(I-BJ^+) \in A\{1,2,4\}$; (iv) $(AA^++JJ^+)^+B=B_{\bullet}$

Hence a part of the contents in the present paper contain the main results of [1].

References

- [1] Hall, F. J.; Hartwig, R. E., SIAM Math., 30(1976), pp. 617-624.
- [2] Anderson, W. N. Jr.; Duffin, R. J., J. Math. Anal. Appl., 26(1964), pp. 576-594.
- [3] Ben-Israel, A.; Greville, T. N. E., Generalized Inverses: Theory and Applications, John Wiley: New York (1974).
- [4] Bjerhammar, A., Theory of Errors and Generalized Matrix Inverses, Amsteroam (1973).