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Abstract

This is basically an expository paper on counting rooted planar maps as a part
of the enumerative theory of planar maps which was founded by W.T. Tutte in the
sixties.

However, several new results and a certain number of simplifications and
provided.

§1 Introduction

The original paper of W.T. Tutte [13] on the enumerative theory of planar
maps has brought about a series of papers on enumerating planar triangulations. In
1982, W.T. Tutte published his famous expository paper in the field to make the
theory simpler. In the same period of time, the enumerations of general planar
maps have also been investigated. A certain number of results have been obtained,
although relatively fewer than triangulations. However, two types of elegant for-
mulae obtained by Tutte should be mentioned: one determining the numbers of
rooted general, nonseparable and 3-connected planar maps with the edge number
given [16]; the other determining the number of rooted Eulerian planar maps with
given vertex-partition according to the valencies of vertices [15].

In this paper, the main purpose is to show a quadratic functional equation, as
Tutte’s papers [16, 17] implied, of the enumerating function of rooted general plan-
ar maps such that the parametric expressions are derived directly for finding the
-explicit formulae of the numbers of combinatorially distinct rooted general, loop-
less, simple, non-separable, 2-connected, 3-connected and 2-nonseparable planar maps,
Here, those about loopless, simple, 2-connected and 2-nonseparable are new. All the
procedures of finding them are in some sense simplified.
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The terminology not explained here can be found in [6,7,8,16].
§2 Functional Equation

Let 4 be the set of all the rooted general planar maps. The function p(x,y) of
two independent variables x,y, denoted by
x = xm(ll) n(M)
0(x,3)) %ﬂ e, .10

is said to be the enumerating function with two indices m,n which represent the
edge number and the valency of the outer face of M respectively.
A/ may be divided into three classes:

M= Mo+ M+ M 2,2)
where 4/, consists of only one map, i.e. the vertex map; ,;, 4, represent the
subset of 4 in which all the maps have the root-edge separable, non-separable
respectively.

Of course, the contribution of &, to p(x,y) is
1, (2,3
As to ¢, for any ME 4, let M/=M-A, i.e. the map obtained by deleting
the root-edge A form M. Then
=M1+ Mj, 2,4
where M}, M, are components of M’. And M}, M; may be rooted as taking the
edge adjacent to A on the boundary of the outer face of M as the root-edge whose
direction agrees with that on the boundary along A. Since both M[,M; & 4, the
contribution of &, to p(x,¥) is
xy* (p(%,¥))2. (2,5)
Finally, for any ME 4 ;, M’ =M - A may be rooted as taking the edge succes-
sive to A in the direction consistent with what is defined by A on the boundary
of the outer face of M. Let I be the number of the edges on the boundary of the
outer face of M’ but not on that of M. Then, it can be seen that for any ME &,
there exists an M’ € 4 with 1>0, and conversely, for any M’ € 4, there are just
n+1 maps, i.e. those of 1=0,1,.,n,n=n(M’), in g, corresponding to M’. In
other words, the contribution of &, to p(x,y) is

n(

2 : § :xm(MHlyn(M)—[H

Mea [ =0

_xyzxm(u) y- y yn(M)’

Me 4

or simply writing it as

—yi_y—l(y p(x,y) —h(x)), (2.6
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where
h(x) =p(x,1) = >} x™¥, 2.7
Me 4

Consequently, according to (2,3), (2,5) and (2,6), we obtain the functional.
equation satisfied by p(x,y) as follows

P&, ) =1+xy* (p(%,)) 2+ 2 Xy CAICERLIOM (2,8)

§3 Parametric Expressions

First, we transform the functional equation (2,8) into the following form

Qx@ -1y x,y) +Xy2 -y +1)2=4(X,¥), (3,1)
where
A, y) = (XY =y +1)2 -4y (y - 1)X (Y -1 -xyh (X)), (3,2)
It £ is a power series of x such that
EE-1Xp(x,E) +— 5 25 (XE2—E+1) =0, (3,3)
i.e. the perfect square on the left hand side of (3,1) equals zero, then we have
f l(x £) =04
VZoax, ) I @.4
{ 63’ 0.

According to (3,2), the followmg two equations with x and h=h(x) as vari-
ables, £ as a parameter, can be found
EAx2—2E2(E—1) QE~-1)X+ (E—-1)2+4E3(E~1)x%h = 0;
{2&3x2— (CE(E-1) +E2+4E(E-1) QE-1))X+ (E~1) + 283+ 6E2(E-1)) X" =0,
From both these equations, the parametric expressions of x and # can be derived.

(3.5)

§4 General planar Maps

In order to determine h(x), the enumerating function of rooted general planar
maps with the edge number as an index, we solve the equations in(3,5). By elimi-
nating the terms with x%, we have

{2g3x2h= E2(BE-2)x+ (E-1)(E-2);

£+ 282 - D2+ (E- D2(25-3) =0, 4.1
From the last one of (4,1), we obtain
""“gT(‘ E-D2HE-1)E=-2)), (4,2)

Since h(x) should be a power series of x with all the terms positive, only the
negative sign is available whence we have

x=—gz—<1—5) 2e-3), 4.3
According to the first equation of (4,1), we find

© 1995-2005 Tsinghua Tongfang Optical Disc Co., Ltd. All rights reserved.
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po LEW-8) (6E7-145+8) _£(4-38) (4.4
2 (1-8)2(3-2§)2 (3-28)2°
If the substitution of parameters
=é (4.5)
is introduced, (4,3) becomes
x=(1-6)(36-2). (4.6)
From (4,4),
40-3
h" (30_2)20 (4.7)

By using Lagrange’s Theorem, the following explicit form about h(x) may be
found [167.

= 2:3"2m)1
h (%) 1+Z T mt (4.8)

§5 Loopiess Planar Maps

A Loopless map, as the term suggests, is such a map in which there is no
loop. Let ., M y.(+,2) be the set of all rooted loopless planar maps and such
maps with the valency of the outer face being 2 respectively. Then we have the
following conclusions;

Lemma 2,1 Let us write

My (m) ={MIME My, and m(M) =m};

(5.1)
Mym,2) ={MIME My, (+,2) and m(M) =m},

Then we have
| My(m) | =| My (m+1,2) |, (5.2)
‘where |X| denotes the cardinality of set X.

Proof In fact, we may find a 1-to-1 correspondence between &, (m) and
My (m+1,2) for any m>=0. Apparently, when m=0, | 4y, (0) | = My 1,2)], i,
the vertex map corresponds to the link map.

When m>1, suppose that ME 4/, (m+1,2), we take M/ =M- A, of course,
M’ € My (m). Conversely, from M’ € 4/, (m), we may add a new edge connecting
‘the two ends of the root-edge to M’ such that the new edge and the root-edge form
the boundary of the outer face of the resultant map M. Then ME 4y, (Mm+1,2).
Paying attention to the uniqueness of the above procedure, a 1-to-1 correspondence
has been found, [ |

Accorging to the lemma, the following theorem may be obtained.

Theorem 2,1 Let hV.(x) and g"‘(x) be the enumerating functions of &,
and /. (,2) with the edge number as the index. Then we have

XhVE(x) = gNL (%), (5.3)
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Proof In fact,

gNL (x) = Z x ™D

MERNL(, 2)
= Z XPMO+1
M/ EMrL
=x hVL(x), |
Based on the theorem and [8], we have
x = t —" 1;
t (5.4)
RVL(x) =t2(2~1),

By employing Lagrange’s Theorem, the explicit expression about hVi(x) may be
derived as

- m+ .
RVL(x) =1 + n;%ﬁm—x . (5.5)

It is of interest to note that the formula is just the same as counting rooted
strict planar triangulations with the number of inner vertices as the index [13].
However, up to now, a 1-to-1 correspondence between them has not been found.

§6 Simple Planar Maps

By a simple map, we shall as usual mean that in a map, there are neither
loops nor multi-edges. Let ¢/ be the set of all the rooted simple planar maps,
hS(x) be the enumerating function of such maps with the edge number as the index.
According to [8], we have

hNL(x) =hS (gM-(x)), 6.1
The following parametric expressions have been found
N t-1@2-1
X=gVl=2 2= "
i (6.2)
hS(X) =t*(2-1)

Moreover, since

——d—hs=t(4-—3t) -——ts—=t" 6.3)

dx (4-30) ’ .
if we denote G (x) =t*, then

hS (x) =1+I°G(x)dx, hS(0) =1, (6.4)

In this case, by using Lagrange’s Theorem, we obtain

® m=1 .
_ X" 4@m+312m-i-2)1
G(x)—1+4x+'§zm!i.zoi! m-1-11 Gm=T+31 s (6.5)

Hence, from (6,4), we find

© 1995-2005 Tsinghua Tongfang Optical Disc Co., Ltd. All rights reserved.
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«© m(m=2 .
s - 2 X 42m+1)1(2m—1i—-4)1
hS(x) =1 +x+2% +,§m!L§i!(m—i—2)!(2m—i+1)g i (6.6)

§7 Non-separable Planar Maps

A non-separabie map is such a map in which there is no vertex separable i.e.
no cut-vertex. Let 4/, be the set of all the rooted non-separable planar maps, and

hy(x) = 3V x™ 7.1

McH,
the enumerating function of g, with the edge number as the index.

However, from any M E 4/,, the rooted general planar maps of a certain type
may be found by embedding rooted general planar maps into some angles of M such
that the root-vertices identify with the vertices of corresponding angles, Conversely,
for any rooted general planar map, let the non-separable component including the
root-edge be called its 2-nucieus, then the map may also be considered as the one
obtained by the above procedure from the 2-nucleus as a map in _/,.

Since the number of angles is twice the edge number, wa have

h(x) =h,(x(h(x))?), (7.2)
On account of (4,6), (4,7), and introducing
_ 1
"" 30__ 2’ (7.3)
we find
N S
X=am m-1, (7.4)

Furthermore, let us write
w=x(h(x))? (7.5)
then the following are derived

W= (- -2,
| w=gr =D G-nk

y . (7.6)
i\ hy(w) =“3‘*(4 -m,
Consequently, we may obtain
—_ 203Mm-3)1 ..
hy (%) =1+Zm9€ , (7.7)
m=1 ¢ .

by using Lagrange’s Theorem [16].

§8 2-connected Planar Maps

By a 2-connected map, we shall mean that it is non-separable and simple.
Let 3 be the set of all the rooted 2-connected planar maps and

hi(x) = 3 x= (8.1)
Me 4§

© 1995-2005 Tsinghua Tongfang Optical Disc Co., Ltd. All rights reserved.
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be the enumerating function of & with the edge number as the index.

Since any rooted non-separable planar map may be considered as a map obtained
from a rooted 2-connected planar map by an assignment of edges for which some
rooted non-separable ones with the valency of outer faces being 2 are substituted
except for the one in which there is only one edge and the edge is a loop. It can be
seen that different rooted non-separable planar maps correspond to different roote&
2-connected ones or different assignment of edges; of course, any rooted 2-connect-
ed planar map itself is a rooted non-separable planar map, we have

hy (%) —x=hf(8,(%))), (8.2)
where g,(x) is the enumerating function of the rooted non-separable planar maps
with the outer face valency being 2.

Accorging to the reasoning of theorem 2.1, with the exception of the edge
number less than 3, which are easily determined directly, we may find .

82(%) =X+ X2+ x(hy(x) —=1~2%), (8.3)

Let us write

U=g, (%) =x(hy(x) %), 8.4
From (7.6), we derive
u=3""M-1 U-Mm*N+2)%

h W) =374 -m M+2)2, 8.5

If the following substitution is introduced

4-7
Q= n—+'2', (8.6)
then we have

(40— 051 _ LA

Ju—Z a1-9o) (l+q))e:
@ 8.7

\
S(u) = 9¥—nr
khz(u) =2 @®+1)% "

In conclusion, by using Lagrange’s Theorem, we may deduce the following ex-
pression in terms of definite integrals.

(6m-4>1J(m) x"
m-1)1(2m-2)1 my’ (8.8)

hs (%) =1+x+§ e
where
1
J(m) = 4mI Yy ol -y)®2(2y—1)""dy (8.9)
0

1
- (3m - 1){03’3""2(1 -2y —-1)"" A4y,

Therefore, an explicit or recursive formula may be found by calculating the inte-
grals directly or recursively. Unfortunately, it does not seem to be as simple as
the others in the paper.
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§9 3-connectcd Planar Maps

A map is said to be a 3-connected map if it is 2-connected, with at least 4
vertices, and can not be separated into at least 2 components each of which has
at least 2 edges by the removal of any two vertices. In [16], such maps are called
c-nets also. From the definition, any 3-connected map has no multi-edges.

Let /; be the set of all the rooted 3-connected planar maps and

hy(%) = 3 x4 9.1

Me M
be the enumerating function of 4, with the edge number as the index.

According to Tutte’s theory [16], we have

g (X) = x* - 2%

145~ %% 9.2
where
x= —71;11(3 +m2
(9.3)
1o _q3%2M
- B+me
If the following substitution is introduced
_3+27
$= —3—+—,n—9 9.4
then we obtain
X=(1-8)s;
1-s 9.5)
2= ST
2-3)
Let us denote
-z= ZRmx"', (9.6)
m= ]

In order to determine R, more effectively, Tutte provided an elegant recursive
formula {16] by using Lagrange’s Theorem although an explicit formula can be
found directly. However, we here provide a simpler recursive one for calculating

R, as

( - -1
{J\ RM_M—Rm-‘l"——;n—_Rm-Z’ mz=3; 9.7

i, R1= _1, R2=2,
without using Lagrange’s Theorem, because it can be shown that -z=y satisfies
the following differential equation

(4x2+7x—2)%+(6x—15)y=2. 9.8)

Consequently, from (9,2), we have

hy(¥) = D ((~1D"2 +R,_) X", (9.9
m= 4

© 1995-2005 Tsinghua Tongfang Optical Disc Co., Ltd. All rights reserved.
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§10 2-nonseparable Planar Maps

By a 2-nonseparable map is meant that it is nonseparable and no two vertices.
can separate it into at least 2 components, each of which has at least one vertex by
removing the two vertices and the edges incident to them, Naturally, in such map,.
multi-edges are allowed, and it is easily seen that any 3-connected map is 2-nonse-
parable, Conversely, any 2-nonseparable map would be 3-connected whenever multi-
edges were not considered, except for the trivial cases of the edge number less
then 4.

Let /4 be the set of all the rooted 2-nonseparable planar maps and

hy(x) = > xma

e (10,1

be the enumerating function of % with the edge number as the index,
According to what we hrve just discussed, the following functional equation
may be found

hN(x)———+(1 )+n(1 x) (10.2
Since we have
1w (k+i-1)y
(1-x)* “Z; Gk=D1i ¥ =0 (10.3)

from (9.9) and (10.2), the following formula may be obtained

h’;’(x)=2xm+i[m; ]x +Z Z[l Ja;x’":iﬁmx"', (10,4)
m=Q m=38 -

m=4 j=4 m=gQ
where
1, 0<m<2;
2, m=3;
Bn= N v (10,5)
m-3 m-1
+25 . Ry, m=4,
2 i=4 l"'l

in which the following identity has been used,

i(?_—;)(‘l)‘=(m2_2)’ ' (10.6)
id4

and R;, i=2, is given by (9.7).

Now, the aim we posed in §1 has been achieved.

The author’s sincere thanks are given to Professor W.T. Tutte for his directiom
on the subject and his encouragement to write such an expository paper,
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