Integral Formulas for Submanifolds in Euclidean Space and
Their Applications to Uniqueness Theorem*

Li An-Min (李安民)

(Sichuan University)

In present paper we derived some integral formulas for two *n*-dimensional submanifolds in Euclidean Space of dimension n+p E^{n+p} , by which we get some generalizations of the Christoffel theorem and the Hilbert-Liebmann theorem.

§1 A generalization of the Christoffel theorem

Let M, M' be two *n*-dimensional compact submanifolds (without boundary) in E^{n+p} , $f: M \rightarrow M'$ a diffeomorphism such that M and M' have parallel tangent spaces and parallel normal spaces at x and x' = f(x) respectively, that is Mand M' have same Gauss image. Suppose that there exists a unit normal vector field e_{n+p} over M (it is also the unit normal vector field over M') such that the second fundamental form (h_{ij}) of M (resp. (h'_{ij}) of M') at e_{n+p} is positive definite symmetric matrix. Denote the mean curvature vector of M (resp. of M') by H (resp. H'), and let $K = \det(h_{ij})$, $K' = \det(h'_{ij})$.

We proved following

Theorem 1 M and M' differ by a translation if K = K' and H = H'.

Theorem 2 Suppose that $\dim(M) = \dim(M') = 2$, if $\frac{H}{K} = \frac{H'}{K'}$, then M and M' differ by a translation.

Theorem 2 is a generalization of the Christoffel theorem.

§2 Some generalizations of the Hillbert-Liebmann theorem

Let M be a compact, connected, n-dimensional submanifold in E^{n+p} .

Assumption A There exist p unit normal vector fields $e_{n+1}, e_{n+2}, \dots, e_{n+p}$ over M such that M is umbilical with respect to $e_{\tau}(\tau = n+1, \dots, n+p-1)$, and M is convex with respect to e_{n+p} , that is for each $x \in M$, M is contained in one of the closed

^{*}Received Mar. 15, 1983.

half-spaces

$$H_x^+ = \{ y \in E^{n+p} : (y-x) \cdot e_{n+p}(x) \ge 0 \}$$

or

$$H_x^- = \{ \mathbf{y} \in \mathbf{E}^{n+p} \colon (\mathbf{y} - \mathbf{x}) \cdot \mathbf{e}_{n+p}(\mathbf{x}) \leq 0 \}$$

and

$$M \cap \{ y \in E^{n+p} : (y-x) \cdot e_{n+p}(x) = 0 \} = \{ x \}.$$

For e = even let

$$I_{e} = \frac{(-1)^{\frac{e}{2}} (n-e)!}{2^{\frac{e}{2}} n!} \delta_{j_{1} \dots j_{e}}^{i_{1} \dots i_{e}} R_{i_{1}i_{1}j_{1}j_{1}} \dots R_{i_{e-1}i_{e}j_{e-1}j_{e}}$$

where R_{ijkl} is the Riemann curvature tensor of M. I_e is called the Killing invariant.

Theorem 3 If M satisfies the assumption A, and $I_e = \text{const.}$ for a fixed even e, then M is a sphere.

Theorem 4 If M satisfies the assumption A, and there exist two evens e, τ , $2 \le \tau < e \le n$, such that $\frac{I_c}{I_c} = \text{const.}$, then M is a sphere.

For the convex hypersurface in S^{n+1} we have

Theorem 5 Let M be a closed, strictly convex hypersurface in a sphere S^{n+1} , S_r be the r-th elementary symmetric function of the principal curvatures of M. If $S_r = \text{const.}$ for a fixed integer $r, 1 \le r \le n$, then M is a sphere.

Theorem 6 Let M be a closed strictly convex hypersurface in S^{n+1} . If $\frac{S_r}{S_r} = \text{const.}$ for two integers r and τ , $1 \le \tau < r \le n$, then M is a sphere.

References

- [1] Chern, S.S., Integral Formulas for Hypersurfaces in Euclidean Space and Their Applications to Uniqueness Theorems, Shiing-shen Chern Selected Papers, 269—277.
- [2] Chen wei-huan, Some integral formulas on submanifolds in Euclidean space, Proc. of the 1980 Beijing Symp. on Diff. Geom. and Diff. Equ., Vol. 3, 1127—1140.