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Abstract

This survey paper studies the approximation of (polynomial) processes for which the operator
norms do not form a bounded sequence. In view of familiar direct estimates and- quantitative
aniform boundedness principles, a unified approach is given to results concerning the equivalence
of Dini-Lipschitz-type conditions with (strong) convergence on (smoothness) classes. Emphasis is
laid upon the necessity of these conditions, essential ingredients of the proofs are suitable modifi-
<cations of the familiar gliding hump method. Apart from the classical results concerned with Fourier
partial sums, explicit applications are treated for (trigonometric as well as algebraic) Lagrange in-
terpolation, iflterpolatory gquadrature rules based upon Jacobi knots, multipliers of strong conver-

gence, and for Bochner-Riesz means of multivariate Fourier series for parameter values below the
critical index.

1 Introduction

Let C,, be the Banach space of 2rw-periodic, continuous functions on the real

axis R; endowed with the usual sup-norm|j.||.. Concerning the uniform convergence
of the Fourier series

S (k) g ik NPPRURI ) - ik
a.n fgx>~,§wf (e, [ ) =5r| fae *du,

of f&C,,; that is, the uniform convergence of the nth partial sum
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(1.2) (S =D f toye

k==-n
towards f, a sufficient criterion is provided by the classical Dini-Lipschitz con-

dition (cf, [3, p. 1055 361, p. 6301

(1.3) o, {(1/n, f;Cy,) log n=0;(1) (n—>c0),
where the (first order) modulus of continuity of f is given by
1,4) @, (2, f;Co.) = sup ifw+hy —fanic.

t

It was already shown by Faber and Lebesgue in 1910 (see [11, p. 408ff; 147, also
[32; 361, p. 302]) that conditions of type (1,3) are in fact necessary if the in-
dividual function f is replaced by a whole (generalized) Lipschitz class, More pre-
cisely, if @ is a continuous function on [(,co) such that

1.5 0=00) <o <o), o) /t<a(s)/s (0<s=<t)

(abstract modulus of continuity, cf. [31, p. 96f£]), then the Dini-Lipschitz-type

condition

(1.6) w(1/n)logn=0(1) (n—>-co)

is necessary and sufficient for the uniform convergence

1.7 1Saf = fllc =0 (1) (->00)

to take place for each fC(C,, satisfying the (generalized) Lipschitz condition
(1.8 @, (t, f3Cp) =05 (@ (1)) (@->0+),

Starting from this classical result, it is the purpose of the present paper to in-
dicate a general approach to the subject. On the basis of quantitative uniform
boundedness principles, previously developed in [4-6;9], Section 2 delivers (quan-
titative) equivalence assertions of the Dini-Lipschitz type for quite a general class
of operators in Banach spaces. Emphasis is laid upon the necessity of the condi-
tions, essential ingredients of the proofs are given by suitable modifications of
the familiar gliding humpmethod. Section 3 is devoted to some first applications to
(trigonometric as well as algebraic) Lagrange interpolation, interpolatory quadrature
rules based on Jacobi knots, multipliers of strong convergence, and to Bochner-
Riesz means of multivariate Fourier series for parameter values below the critical
index. See also the introduction to Section 3, and for some historical comments the
end of Section 3. 4, 6.

The authors would like to express their sincere gratitude to Dr. W. Dickmeis
for a critical reading of the manuscript and many valuable suggestions.

2 General Theory

+), and X* be the class of

Let X be a (complex) Banach space (with norm
functionals 7 on X which are sublinear, i. e.,
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IT(f+8) | <|Tf| +|T8l, |T(af)|=]a||T]]
for all f,gc x and ac C (: =set of complex numbers), and which are bounded, i.e.,
ITlixe: =sup {|Tf]; Iflx=1}<oo.
For a normed linear space Y let [X,Y] be the space of bounded, linear operators of
X into v (for short [X]:=[X,X1). Let {®¥,} be a sequence of positive numbers
satisfying (n€ N: =set of natural numbers)

(2.1) O<(pn+l<(pn9 lim ‘pnz()!
and o a function satisfying (1,5) as well as
(2.2) lime(t) /t =co,

tQ 4+

Theorem 2,1, Let T,€X* and U,,UC[X,Y] satisfy (cf. (2,20-22))
(2.3 WUF ~Uf <C iU lixys [ TS Fex.
Moreover, suppose that there exist a sequence {®. }, subject to (2,1), as well asele-
ments g, C X and constants C>Q such that (j,nCN) '

2.4 lgallx<Cx

(2.5 |T.8;l<C; min {1,9,/9;},

(2.6) U8l =C.llUullixyy &

Then for each o satisfyinz (1,5), (2,2) and each (strictly, positive sequence {y,} with
2.7 @@, =0(¥,) (h—>00)

the Dini-Lipschitz-typz condition

(2.8) WUallixvi @ @) =0,

is mzcessary and sufficient for

2.9 U.f~Uflly =0,(¥,) on {fCX;|T.f| =04@(®,))}.

Proof Obviously, (2,8) implies (2,9) in view of (2,3), whereas the necessity
is a consequence of the quantitative uniform boundedness principles, given in [4;
5;6, Chapter 2;9]. Let us include a proof, for the sake of completeness,

Assume then that (2,8) does not hold, i.e.,,
(2.10) 1Ulixv1 @ (@) /%,2>C5>0
for infinitely many ncN. Starting with an arbitrary n, € N one may successively

construct a monotonely increasing subsequence {n,} CN satisfying (2,10) as well

as (k>2)
A P, Pux.
2.11 @ (P,,) <m1n{“-w(‘Pn,_.),“'”"" R-t }
( ) 2 k7 Colk—DfUn i I
k=1
2.21) D0 @0, [ Pa <O (Pry) [ Po,y
i=1
d) k-1
(2,13) ndir USially <=2 oo = 2 0@ 0,

i=1
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Indeed, (2,11,12) will be satisfied in view of (1,5), (2.1,2,7), whereas (2,13) is
a consequence of (1,5),(2,5,9). Since X is complete and (cf. (2,4,11))

(2.14) >0 (®,,) 184, x<2C0 (D),
i=k
the case k=1 implies that f;: = >7.,0(®,,)¢,, is well-defined as an element in X.

Then, given nx=n,, let k€N be such that n,<<n<n,,,. By 1.5), (2.1,5,11,12) one

has

oo

k
iTnf0!<CB(an w(q)ni)/q)n;+03 Z G)((pn,)

i=1 i=k+1
<2C39,0 (Pry) /Py + 2C300 (P, ) <4C30(9,)
so that (2,9) implies
(2,15) [UWfo~Ufolly =0 @) .
On the other hand, if U,, —U is applied to f,, this yields by (2,4,6,10,11,13,14)
[Uafo = Ufolly =0 (®ay) ([Unenmlly = Ugmlly)
= [ Un =) frerlly = | Wa =) (o= f) Iy
=9,,[C.C5 = 3(CollUllixtov1 + 1) /K1y
which is a contradiction to(2,15), proving the theorem, |

Obviously, one may replace the parameter n with n-»co by a continuous p>o0
with p—>co (cf. Section 3,2), Moreover, (2,3) is actually not used for the necessity,
that is, for (2,9 =1(2,8),

Note that an appropriate choice of {y,} does not only determine necessary bounds
for o to ensure convergence (choose ¢, =1), but also regains previous results on
the sharpness of (2,3), In fact, if one chooses y,=|U,ll(x,v@ (¥,), then (2,8) is
trivially violated, so that necessarily there exists an element f € X with
(2.16) |IT.f,| =0 @(@®,)),

WU.fo = Uflly #=oUlUll worri@ (P))
Let us mention that this interpretation has indeed many applications concerning
the sharpness of error bounds in various areas of analysis. For details see [1;4-9;9],

Analogously to Theorem 2,1, one may formulate a large-O-version in the sense
that small-o-rates in (2,7-9) are replaced by large-O-one’s, In fact, a proof may
then be given via a reduction to the classical uniform boundedness principle (cf.
[6, p.21D),

Theorem 2,2, If the conditions of [hecrem 2,1, i. e.,(2,3-6), hold true; then
for each o,{y,} satisfying (1,5) and
(2.17) @(@) =00, (f—>00)
the Dini-Lipschitz-type condition
(2,18) U@ ®,) =0 @,
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is necessary and sufficient for
(2.19 lU.f-Uflly=0;¥0) on{fcX; |T.f|=05@@®,))},
Proof Since T,€ X*, the space
z2={fEX; |T.f|=0¢@(®,)),n>c0},
Ifil-# = UIfllx +sup T, | /@ (@),
is a Banach space. Now (2,19) implies
lWU.-ily=0,) (FEZ),
thus by the classical uniform boundedness principle
U, = Ullizori= 0(¥,)
Moreover, by (1,5), (2.1,5)
|T.8;|<Cmin{1,®,/9;}<Cymin{1,e(p,) /0@ },
so that by (2,4)
lgillz<Cr+ C3/0(®) <A/2(®)),
Therefore in view of (2,4,6,17) one obtains
N tx0119 (90) <Al U L.y @ (90)

<A;|U.8, — Ug.lly/l18.l12 + AsllUll xs 11841 x0 (@)

<A U, ~Ullizoy1 +0(@(9,)) =0 ¥,),
thus (2,18), Of course, the other implication follows by (2.3). |

In the applications the process {T,} mainly serves as a measure of smoothness.
For example, T, may be given in terms of moduli of continuity or Peetre K-fun-
ctionals., Yet another concretization of T, is performed via the error of best
approximation
E(f,M,) s = Ex(f, M,) + =inf{}|f - p,|[x; P. EM,},

where M,,nCN, are certain linear manifolds with M,cM,,; X, In this connection
a special class of operators U, is of interest, namely those for which

(2.20) U,P,=UP, (P,€M,),
(2.21) Ullixyi<ClUllixov1e

Indeed, then one has (cf. (3.2))

(2.22) HU.,f—Uf||y=pi£1£ WU~ (f-p) Iy

< ([Uallpeoys + U ixsy) pi.felﬁfh“f = Dully
<ClU.llpxonE(f, M,)
thus an estimate of type (2,.3)., In this situation there often exist operators (de la
Vallée Poussin means, Fejér-Hermite processes) V,&[X] such that
(2.23) W.lm<c, V. (X) CMy,, U,V,.=U,.
Then Theorem 2,1 (2.2) delivers (terms in brackets (---) give the large-O-version
as a conclusion of Theorem 2,2),
Corollary 2,3 Let {e,}, subject to (2,1), and {¢,} be such that
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(2,24) £, =07, ¥,>0,
£,=0(Y,) C=00,)),

Suppose thar for U,, UCLX,Y] with (2.20,21) there exist V& [X] with (2,23).
Then the followin two assertions are equivalent.
1 WU e, = 0(Y,) (=0,
di v f-ufiy =0, (=0 (P))
for cach fEX with E(f,M,) =Q;(2,),

Proof By the definition of an operator norm there exists f, & X with
2,25 Hlx= b USLS S
To apply Theorem 2.1 (2,2) to

g€n=V. 0 T.f=E(f,M.,
oac has (2,3,,4,6) in view of (2,22,23,25)., Moreover, (2,5) follows with ¢ =g
since by (2,23, 24)
;= 0<<min{1, ¢*/el} 2j<n),
T.3;<|'8; IxSC<C*min{1, & /ej}  (2j>n),

Finally. (2,7) < (2.17)>>is valid for o(t) =t'? by (2.24). E

Note that the proof still works if the error of best approximation is replaced
by functionals 7,¢ X* for which, apart from (2,3), a condition of type
(2.26) [T Du | <Cpalixmin{l, @, /@ } (v, €EM,)
holds true. In many situations, the latter estimate follows by an iterative applica-
tion of a Jackson- and a Bernstein-type inequality. See, for example, (3.3) where T,
is the modulus of continuity (1,4),

3 Applications

Typical for the application of an equivalence assertion of Dini-Lipschitz-type
is a situation given via (2,20-22) where the operator norms of the process {y,} do
not form a bounded sequence, that is, where
3.0 lim sup | Ul x,;1 =00

niiXo: s

L

In fact, the results of Section 2 then provide minimal (smoothness) properties the
elements should satisfy in order to ensure convergence. From this point of view
note that the case |U,lv,,;=0(1) is already governed by the classical Banach-Stei-
nhaus theorem.

3,1 Fourier Partial Sums

For the partial sums (1,2) an application of Theorem 2,1 yields
Corollary 3,1 Let o satisfy (1,5), (2.2), The foliowing two assertions are equi-

valent (n—»o0),
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(1) ISallic@(1/m) =0(1),
(D) 1S f-flle=0,(1) on {f€Cus @, (1/n,f5Cy) =0s(@(1/m) },

Proof Choose X=Y =C, U,=S,, U=1(: =the identity), and T,f=0,(1/n,f;
‘C,) JIf 171, denotes the set of trigonometric polynomials of degree n, then (2,3) fol-
lows in view of
(3.2) 1S f—fle< +1Salc) E(f, T

LC U + [ Sulicy) @ (1/7, f3C2.)

the latter estimate being a consequence of Jackson’s theorem (cf. [3,p.97]). Con-
versely, let f,&(C,, be such that

(falle=1, [Sufallc=31Sallicn s
and consider the classical delayed means V,= (1/n) 32i.,, S, of de La Vallée
Poussin. Since (2,23) holds true for these means (with M, =11,, cf. [3,p.108]), the
-elements g, =V,f,CII,, satisfy (2.4,6) as well as (2,5) with ¢,=1/n, since by the
mean value theorem and Bernstein’s inequality (cf.[3,p.997])
3.3 T&fﬂf&& llg;j(w+h) -8, (W lo< (1/n) ||8] |<Cj/n.

Therefore an application of Theorem 2,1 with 9, =1, n€ N, completes the proof. J
Since the operator norms ||S,l|l;...; behave like logn (cf. [3,p.42]), Corollary
;3,1 indeed regains the result, mentioned in Section 1, namely the the equivalence
of (1,6) and (1,7) for the class (1,8). Moreover, the proof given above also shows
that the assumptions of Corollary 2,3 hold true. Therefore
Corollary 3,2, Let {¢,}, subject to (2,1), and {y,} satisfy (2,24), The follow-
.ing assertions are equivalent,
A Sl =0y Lan=0(,) >,
(i) 1Suf ~ fllc=0s () Lo =05 (P) >
for each fE&C,, with E(J,H,) =0;(,).
In fact, all the arguments given above remain true if the Banach space C,, is
replaced by e.g. L.,, the space of 2r-periodic, Lebesgue integrable functions with

norm ||f|l,;:=(1/2x) J {f(w)! du. Since again ||S,||;;1,~10og n, a parallel applica-

tionp of Theorem 2,1 also delivers
Corollary 3.3, Lel o satisfy (1.5), (2.2) The following assertions are eguiva-
lent,
(i) o (1/nylogn=o0(1),
i IS, f-flli=0s(1) on {fELL @, (1/n,5LL.) =0 (@(1/nm))}.
3.2 Bochner-Riesz Means
ifet RY, NEN, be the N-dimensional Euclidean space with inner produet
-xy.=x%., %;¥; and norm x| := (xx)"?, and let Z" be the N-fold Cartesian product
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of Z (:=set of integers). With Q":={xcR"; -z<x;<w, 1<j<N} let C,.(Q")
denote the space of continuous functions on R¥Y, 2zx-periodic in: each variable,
with the usual sup-norm |.|.. For the Bochner-Riesz means (¢>=0, p>0, x€ER”Y,
FEC,L Q)

a 2 o— ~ ik% -~ S - lklz “
(BEN) (1= 3 byyo ()~ (Rye, bp,a(k).—(maxel A o})

7 (ky: = 2m) ‘NJ’Q faye i*du,
one has the direct estimate

3.0 IBZf = fle<ClBllccmmn @2(P71, fiC2: (QM)),
(3.5) @, (t,1;C5, Q™)) i = Sll.lljl) Hfx) —2f x+h) + f(x+2h)||cy
0<ihi<?

thus an inequality of type (2,3), Indeed, oen may, for example, apply the local
divisibility argument of [8, Section 4] to the multiplier (b,,,(&) = 1/||B%llic.xcoxn
and use the equivalence of w,(t,£;C,,(QY)) with the Peetre k-functional k(2 f;
C2 (QY),CH(QY)) (cf. [2,p.258]).

An application of the results of Section 2 then yields

Corollary 3.4, Let a>>0. For each o satisfying (1,5), (2.2){(1,5))and each
(strictly) positive function ¥ on (0,cc) wihe (t—>0+)

(3.6) o(t)y =o@@™h)) (e=0@EH))
the following assertions are equivalent (p—»cc),

) B [l cc.migrry @(P7%) =03 (0?)) (= 0@0H)),
(ii) IBSf — fllc =0; (% (PH) (=0 ($(PH)))

for each f€C, Q) with 0,(1,§:C,.(QV)) = O4(@(t?)),

Proof For an infinitely often differentiable function A on [0, oc) satisfying
(3.7) 0<AD <1, A ={1’ OsIst

0, t=2,
let generalized de la Vallée Poussin means be given by
(L) (x):= keEZ,A( ikl /o) 1" (k)ei¥,

These delayed means satisfy (2,23), i.e. (c£.[21;22] and the literature cited there),
(3.8) ILolccmcorn<<C, LofE€M3, BiL,=Bj,

where 7Y denotes the set of trigonometric polynomials of radial degree at most

p>0. Let f,&C,, (QY) be such that
pr“c =1, “Bzfp”c>%”3ap”tch”)J
and apply Theorem 2,1 <(2,2> to
X=Y=0C, (0, U,=B;, U=I,
Tof =0,(071,§5C2.(Q")), 8o=Lof,.
Then (2,3,4,6) follow by (3.4,8). Morcover, corresponding to (3,3) onc has (cf
[2,0.257]) '

© 1995-2005 Tsinghua Tongfang Optical Disc Co., Ltd. All rights reserved.
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Tr,fp,<p;‘2})5;;f%§§v73p,fc<cmpr,

the sum being extended over all multiindices (j,,--,j,) with j, + .- +jy=2. Thus

(2.5) follows with ¢,=p~2 and the proof is complete. ¥
Note that (cf. (3.1)) for 0<<a<<(N-1)/2 the operator norms |[B|| are not

bounded as p—»>oc (cf. [27,p.170ff]) so that the present corollary then gives a

necessary and sufficient condition for convergence (set ¥(p) =1 for p=0). On the

other hand, the equivalence also holds true for a> (N —1)/2, where the norms are
bounded. Of course, then Corollary 3,4 (ii)=(i), as applied to the case y»(~!) =
w(t) yields the sharpness of the direct estimate (3,4) (cf. (2,16)).

Let us finally mention that again the verification of the conditions of Theoremr
2.1 <2.2> proceeds completely parallel to the one given above, if C,, (Q¥) is replac-~
ed by the Banach space LF,(QV), 1<<p<<cc, of 2n-periodic functions, pth power
integrable over QV.

3.3 Trigonometric Lagrange Interpolation

For fE€C, (=C,,(Q)) the trigonometric Lagrange polynomials, interpolating f
at the equidistant knots x,,=2kx/(2n+ 1), 0<<k<2n, are given by

N
(A.5) (0 '*%ﬁg"("k"’ D,(X=%,.),

n

D, (x):=1+2) coskx =

k=1

sin(n+1/2)x
sinx/2  *

It is well-known that these operators are projections on JII,, their norms being
unbounded (they behave like logn; for details see [11,p.4247, also [20,p.365ff, 392,
492ff; 361L,p. 1££7).

Corollary 3.5, Let {g,}, subject to (2,1), and {¢,} satisfy (2,24), The follow~
ing assertions are equivalent:
(i HAwllcca En=0C¥,) <. =0,) >,
G A~ flle=0r (P < =05 >
for each fE€C,, with E(f,II,) =0,(&,).

Proof The result follows as an application of Corollary 2,3 upon setting

X=Y=Cp M.,=1I, U,=4, U=I, V,=1],

where J, denotes the Fejér-Hermite (or Jackson) polynomial of degree 2m, i.e. (cf.
[3611,p.218L7),

L 1 zn _ \ »
T @) = oy Z%f(xhow"(x X, 1%, i

Let us mention that essentially the result of Corollary 3,5 is already contained
in [11, p. 4221, see also [20, p.392ff; 361I, p.18ff].
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2,4 Algebraic Lagrarge Interpolaticn ai Jacobi Knots

let —1<x¢f ... <(x%¥<1 be the zeros of the Jacobi polynomial (a, 8> - 1)

,-"‘f.”(:c):_:--z~ ,}:‘) (1-x)""(1+x)"# ) A=) (1+x)8*"],

Consider the (algebraic) Lagrange polynormal

n a x_xaf
afffe afy1af 198 (x) 1= IR A
LiFf: ]Elf(xkn)lkn’ e (X) Exzﬂ_ng’
© = ik

associated with these knots, f being a continuons function on[-1,1], ie. f€
C[ -1,1] (with usual sup-norm|j+||c). It is well-known that 12# is a projection on
S, _,, the set of algebraic polynomials of degree at most n—~ 1. The operator norm
of 128 is given by

e e = || 121

which is unbounded by the theorem of Faber. Again we consider the corresponding
Fejér-Hermite polynomial

(H3PP) (x):= D fxeDyagl (),
k=1

the polynomials hif ¢ 9, satisfing hif(x{%) =¢;, and (h§{8)’ (x?%) =0 (with Krone-
cker symbol ¢;,). It follows that H2/ is a positive operator for —1<{e,B<<0 (cf.
[29,p.339]), and thus {|H2®\\ c;...y=1 for all nE N, Hence (2,23) is fulfilled, and
Corollary 2,3 delivers (cf. [20,p.389ff7),

Corollary 3,6, Ler —1<e,B<0, and suppose that {c,}, subject to (2,1), and
{9} satisfy (2,24)., "he following assertions arz equivaleri:

A afe,=0() (=0 @)
i) L - flle=0,(90) (o= O ()
for eachi JCCL~1,1] with E(f, $,_)) = Cy(2,),

Noie that, e.g., in the Tchebycheff case ¢#=8= -1/2 one has A;Y*"/* ~logn,
whereas in the Legendre case ¢ =f=( the operator norms A%° behave like nv2 (cf.
[29,p.3358f]).

Concerning the error of ihe ! agranze inierpolation at fixed point x,€(-1,1),
set

M) =D e (x|
k=1
n [29,p.336f] it is shown that (n—»cc)
3.9 F48(xy) = 0(logn), A%%(x,)+o(logn),
Hence Theorem 2,1 delivers for all a,8> — 1,

© 1995-2005 Tsinghua Tongfang Optical Disc Co., Ltd. All rights reserved.



33 An Unified Approach to Apvroximation Theorems of Dini-Lipschit»-Type 147

Corollory 3,7, Let a,B> -1 and x,&{~1,1) be fixed, Then for each o salisfy-
ing (1,5), (2,2) thke conditicn (n-—soc)

Y AP xpo(l/n) =o(l)
is sufficient for
(i) LLSPH) () = F(xy) | = 04(1)

for each f<CL—-1,13with o, (t,f;CL-1,1]) =0(@(t)),
On the other hand, (ii) necessarily implies

(iii) lim inf A%%(x)e(1/n) =0,

n—oo

Proof (i)=>(ii) {ollows by the estimate (cf. [20,p. 112,389])
(3,10 [ (L3P (%) = f(xp) | <Cizb(x) o, (1/n, f5¢[-1,1D),
where the modulus of continuity of f&C[-1,1] is defined by
@, (¢, f;CL-1,1D s =sup{ |[f(x) = f(» |; - 1<%, ¥<1, [x- [ <L},
For the necessity of (iii) set
X=CL-1,11,Y=C,U.f = (L:Ff) (x,),Uf = f (x.),

T,.f=(01 (dn,f§C[— 1’1])9(1": = min (xzfnn“x':ff).
1<k<n-1

In order to construct elements g,, choose f,&X such that
ol =1, [0S =500l = 257
aidlx = L Un nj o= 2 llUn!l[Xﬂ]" 2An (xo)9

and let & be an infinitely often differentiable function on 2 with(cf, | 5;86,p.87fF )

! - J’O ’ u<0
(3,11) 0<h ) <1, () =
L1, u=1,
Setting
“/ F a a o u—x”-’f
R0 L1660 ~ fa Gty TR( M5
Bu () = \; for xf<u<<xif, 1<j<n - |
; fn (:"'fnﬂ) for - 1<u<xi’,{?
N AEH for x?f<Cu<1,

£,ECL—~1,1] is infinitely often differentiable, satisfying
le.llc=<1, ligrlle<<lIn’ |lc/d,.
Since U,%, =U,.f,, conditions (2,4—6) follow with @, ,=d,, and thus (2,68) (note
that (2,3) is not needed), i.e,,
A28 (x)o(d,) =0(1).
Moreover, in view of (3,9) and d,~n"? (cf. [29, p.238]) one has that for infini-
tely many »
() AF (k) <Cody) logs = 2@ (d,) logn<CC o (d,) AP (%) .

This completes the proof of (iii).

With the aid of quantitative condensation principles as given in [7] one may
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establish equivalence assertions not only for a fixed x,& (—1,1) but also for all x
in a dense set of second category in [ —1,1] (for relevant results in a concrete
setting, but with much stronger negative assertions than those available via the
present methods, see e.g. [25; 35]). However, let us also point out that the present
analysis is not suitable for treating divergence phenomena on sets of full measure,
that is, divergence (almost) everywhere.

At this stage some general historical comments may be in order. In fact, Lag-
range interpolation is one of those areas where a rich variety of negative results is
known, In this connection the material of Section 3,3, 4 just indicates how to recover
(and extend) results of a uniform or pointwise (i. e., at a fixed, prescribed point)
nature via the unified approach of Section 2, Apart from the literature already cited,
let us mention work of Erdoés-Turan (cf. [10]) which was followed up in a number
of papers of Kis, Szabados, Vértesi (cf. [12;13;34]) and of Privalov (cf. [24;26]).
Note that this collection again reflects our particular interest in those negative
results which can be completed to an equivalence assertion via a suitable direct
estimate. In fact, the present paper, which actually originates from the material of
Section 3,6, could also be considered as a (extended) realization of assertions envi-
saged by Losinskii in a number of Doklady notes (¢f. [15-17]) which appeared 1948-
1953 without any indication of proofs (see also the relevant comments in the

Mathematical Reviews),
3.5 Interpolatory Quadrature Procedures at Jacobi Knots

For a,8> -1 and fEC[ - 1,1] consider the quadrature formula
n 1
0if: = 3 b Ash, Al = [t du,
k=1 e

for the approximate calculation of Qf: = (', f(u)du. According to [29,p. 355ff], the
sequence of operator norms

a:%: = 10%|lici- 111001 = Z | A4 ]

k=1
is bounded for - 1<a,B<<3/2, In fact, the proof given there shows that q24 behaves

asymptotically like n""%2 if y: =max {a,8}>3/2,

Corollary 3,8, Let @,8>—1 and Y: =max {a,B}>>3/2, For each  satisfying(1,5),
(2,2)<(1,5)>and each positive function ¥ cn (0,c0) with (3,6) the following as-
sertions are equivalent (n—»oco,t—>0+):

1) gPo(l/n) =o@pn)) («+=0(pm))),
(i) |Q%°f - Qf| =0 (¥(m)) (=0 (B (M)
for each fGC[.— 1,11 with o, (t,[;CL-1,11) =040 (1)),
Proof Let h denote an infinitely often differentiable function on R satisfying
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(3,11), For fixed 0<{r<{1 let n& N be such that |x2¢|, |x28|>r, and set (cf.[33])

u—x8
fsjn"‘ (S,’+1,,,—Sj,,)h(ﬁ—-A~ ! )

n

u): = .
8, (1) for x{f<u<x?f,,,, 1<j<n-1

Lo for - 1<u<x?f, xib<u<l,
A,

= min {x?4-x2%,,,,x%8,,,— x36},

IxFal<r
. :={sgnA;i'€, |x381<<r
" 0 , elsewhere,
Then g, is infinitely often differentiable with
(3.12) lgallc<<1, llgnllc<<2ln’ llc/A,<Cn,
since A,~1/n (cf. [29,p. 238]), Now apply Theorem 2,1 (2,2) to
X=c[-1,1], Y=C, U,=0Q%, U=0Q,
T.f=0,(1/nf;C[-1,1D,
Since Q%’p=Qp for each PE ,_,, thus (2,20), condition (2,3) is a consequence
of (2,22) and the classical Jackson theorem (cf. (3,10)), i.e.,
|U.f - Uf | <Ca¥PE(f, P, ) <Ca*P|T.f],
whereas (2,4,5) with ¢, =1/n follow by (3,12) (cf. (3,3)), Concerning (2,6), one
has (cf. [29, p. 358f])
7~ D0 |AL =05, i
1%38 | <r
For material related to Corollary 3,8 see [38;33],
3,6 Multipliers of Strong Convergence
For a Banach space X let {p,},c,[X](P: = set of nonnegative integers) be a total
sequence of mutually orthogonal projections, i. e., o;p,=¢;p, for all j,kEP, and
p.f=0 for all kEP implies =0, Moreover, assume that this sequence is.complete
and regular, i. e., the set of polynomials

nm:=Umn, II.,==SPan(kU pk<x>),
n=0 =0
is dense in X, and there exists some a>=( such that the sequence of the operator
norms of the Cesaro-(C, @)-means

(C, @) . fr =D (A JADDS, As:= ("4,

k=0
is bounded. Let 4 be an infinitely often differentiable function satisfying (3,7),
Then for the de la Vallée Poussin means V,f: = X% A(k/n) p,f one has (cf. [21,227)
(3,13) WVallin<C, V. f€M,  V.pa=p. for p,€1,, :
A sequence t: = {1,},.,C is called a multiplier, thus 1€ M(X), if for each f€X
there exists f°C X such that p,f" = 7,p,f for all k€ P, Since f* is uniquely determined
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by f, the operator T given by T°f:=f" is well-defined, in fact belongs to [X],
Moreover, M(X) becomes a Banach algebra under the norm |it}];,: = ||T | y;, In these
terms, T M(X) is called a multiplier of strong convergence for a subset AcCX if
for each f& A

Hm|T""f =T}y =0,

where the truncated kernel seqnence 7(n) is defined for each nc€P by
T,y o<k=<n
T(1) ¢ ={ ) .

O, k>n,

Covollary 3,9, Let {¢,}, subject to (2,1) ,and {¢,; satisfy (2,24), The following
asserticns are equivalent for 1€ M(X),
(B lzm e =0, (=000,
(i1) T =T =01 (%) =0 ()
for each f&X with E(f,IT.) =0, .

Prooi ILet ns check the conditions of Corollary 2, 3for X=Y, U,=T7"", U=T

T
-

Obviously,

UV2=Us U.P.=UP, for P,CIH,,
thus (2,20,23) (see (3,13)), Concerning (2,21), let f& X with |f||y=1 be snch that
ity =<2{T"fiiy. Since I is dense in X, there exists »,cJ1, with [|f-p,[ly=<1/4 so
that for m>=n

Hrlly<<ellzlyllf = vallx + 2liw ) il 2all 5,
thus [z}, <<5]7(m) [y,

iet us consider the particular case of one-dimensional trigonometric expansions
in X=C,, thus (KEN, cf. (1,1))
(0of) (%) = A (0), 2(p ) (%) = fA(R)e'™ + fA(~k)ye #,

Obviously, this system is mutually orthogonal, total, fundamental, and regular (take,
e. g., a=1 and Fejér’s theorem) in ¢,,, Therefore, since for 7,=1, k&P, the ope-
rator T is the partial sum operator (1,2), Corollary 3,9 first of all reestablishes
Corollary 3,2. Moresver,

b4

01 = | S e o
TE k=~a

50 that conditicn (i) of Corollary 3,9 takes on the form D}, =0(,) . Of course,
the characterization of smoothness in Corollary 3,9 (ii) via the functional of best
approximation can now be replaced by ordinary . ipschitz conditions if one applies
Theorem 2,1 directly to the present situation with T,f=, (1/r,f;C.) . In fact, for
the verification of the conditions one may proceed as for Corollary 3.1 (cf, (3,2,
3)) to obtain for p,=1, nEN,

Covellavy 3,12, For o satisfying (1.5), (2,2) the condition ||Dill,@(1/n)y =c(1)
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is necessary and sufficient for < M(C,.) to be a multiplier of uniform convergence for
the Lipschitz class o, (t,f; Cs,) = O (@(1)),

If, in an obvious terminology, one applies Theorem 2,1 to X =1L}, Y =C,,, then
in view of |[z(n) ;1,5 cm = ID2lc

Corollary 3,11, For o satisf{ying (1,5), (2,2) the condition ||Diilc @(1/n) =0(1) is
necessary and sufficient for & M(LL,, Cs.) to be a wmultiplier of uniform convergence
for the Lipschitz class o, (t,f; L) = Qs (@(t)),

Corollary 3,10 and 3, 11 are due to Teljakovskii [30] and Pochuev[23], respective-
ly. As already mentioned in Section 3,4, it was their work which mainly influenced
the development of the quantitative uniform boundedness principles as outlined in
Section 2, In fact, the results of Teljakovskii and Pochuev were first extended in
[18;19] from the particular situation of 2x-periodic functions and one-dimensional
trigonomefric expansions to regular biorthogonal systems in Banach spaces (cf. Co-
rollary 3,9), This in turn paved the way for the general approach given in[4-6;9]
whose maijn features were reproduced in Section 2 and which in particular does not
need any orthogonal structure or projection properties.
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