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Lp—orthogonality in Banach Spaces®

Liu Zheng (% 1E)

(Anshan Institute of Iron and Steel, Anshan)

The notion of L’-orthogonality was posed by F. Sullivan [1], but it had
never been studied. The purpose of this paper is to give some results concerning
the L’-orthogonality in Banach spaces.

Throughout this paper, X is a real Banach space,

Definition 1 Let p>>1 be a fixed real number and let x,y € X. Then x is called
L.'-orthogonal to y (x.l ..y) iff |x+y|?=|x]®+ [¥lf.

Clearly, L*-orthogonality is just the Pythagokean orthognality.

For [F-orthogonality in Banach spaces to have a useful meaning, it is
necessary to know that there exist nonzero Lf-orthogonal elements.

Theorem 1 Let p>>1 be a fixed real number.1lf x+0,yCX, then there exists a
number g such that x| ;,(ax+y).

Proof Set f(t) ={x+ (tx+y) "~ jix}* - ftx+y||". Clearly, f is a continuous

function on - co<t<{+ oo, and we have

£y = 1EPD 0+ G ol = el 73 = 8170+ vl = 3 -
Then, for t+0,
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g=  |t]7-Tsgnt
Here N, (x;y) and N_(x, y) are respectively the right and left Gateaux' derivatives
of the norm at x in the direction of y.since N, (x,x+v) ={xf +N,(x,y) [2]

we have
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Therefore f(t)—»+ co as t—>+ oo and f(t) > — co as t—» — co. Hence there is a number
a such that f(a) = ¢,which was to be proved.

An orthogonality | is called left (right)unique if for any elements x= 0,
yE&X, there exists only one number a such that ax+y{x (xlax+y). For
Lf-orthogonality, left and right uniqueness are equivalent, since L"-orthogonality
is symmetric.

Theorem 2 Let p>1 be a fixed real number. Then L’-orthogonality in X is
unique.

Proof Let us assume that 1.”-orthogonality in X is not unique. Then there
must exist x5 0, zE€X,and two numbers a,, a, such that x1  .a,x+z and
x|,,a,x+z without loss of generality, we can assume a,>a,. Set ¥=a,x+2z and

a=a,—a;, we have ¢> 0and x| ,,y and x| ;.ax+y.i.e,
I+ ¥ 7= x|+ [iyl" and fx+ax+ 2} "= i + fax + |7, 6Y)
Setting g(t) = ||y + tx||”,we have,by (1),
g(1) = fx|” +g(0), (2)
gla+1) = [x|* +ga. (3)
Clearly g is a convex function on — co<t<<+ oo [3].
Suppose 0<a<(1, for t,and ¢, such that g(t,)=+g(t,), we have
glat, + -t ]1=lay+t,x)+ Q- Y+, ) PP=[ally+t, x| + A -a)y+¢,x|1°
<aly+t,x|P+ Q-a)|y+t,x|?=agt) + A—a)g(t,), (4)
Therefore, by using(2),(3)and(4) we get
g(a) =glas1+ (1-a)-01<ag(l) + (1 —a)g(m), (5)

and
g(1) =glasa+ (1-0a)(1+a)]<ag(a) + (1-a)g(a+1)
=ag(a) + (1-a) (g(a) +g(1) —g(0)),
and that yields
ag(l) + (1-a)g(0) <g(a),
contradicting (5) .
Now suppose a>1, we use convexity of g, and(2) and(3) to obtain g(0)%g(a),
and g(l)+g(a+1),and then by(4) we get

a-1 1 a—1 1
g(1) =g(-~ a -~ 0 +~a——-a)<~*—aeg(0)+—-—T—g(a), (6)
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and

1 a- 1 -1
g(C)—[—a“-1+ (a+1)]<>~é~—-g(1)+ a ga+1)

1 a-1
=5 8+ -[8(a) +8(1) —8(0) ],

contradicting () .
In the case a=1 we have
g(2) =g(1) + |x|| £ =g(0) +2]x}°,
and hence g(0)+#g(2), and then by (4)we get

which is false. Thus in all cases we get a contradiction. Hence L°-orthogonality
is unique in X.

Obviously I°-orthogonality is not homogeneous or additve in a general
Banach space. However, the assumption of these properties will be shown to imply
that the space is uniformly convex.

Definition 2 (Clarkson [4]), A Banach space X will be said to be uniformly
convex iff to each &, 0<{e<,2, there corresponds a §(e) such that the conditions

Il = il =1, lx—vi=e
imply

” —';“ l\ =1-4C8).

Recall that x is called isosceles orthogonal to ¥ (x L ;» iff [x+9f ={x-v],
and if x+0,YCX then there exists a number b such that x] ,bx+y,and if
i
=]
conditions for uniformly convex spaces. 7

Theorem 3 Let p>>1 be a fixed real number. If x,y€ X and |x| = [y implies
x+¥_1,.x—-Y, then X is a uniformly convex space:

Proof Let|x| = |[¥ =1.Then x+y_] ;»x—Y, and therefore

I+ o)+ k=) P = e+ ) + (x =P = 2"
Thus if |x-y|=e (0<<e=2),we see that

* (T

. £ \*1F
so that an admissible value for g(e) is 1-—[1 —(- ~2-~) ] .

IVl =lx|| then|b|=— (James [5]). We now turn to some sufficient
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Corollary 4 Let p>1 be a fixed real rumber. If isosceles orthogonality implies
L?-orthogonality in X, then X is a uniformly convex space.
It is clear since if x,ycXx then |x]| =|yl implies x+y_| x-y,and so
X+Y 1L .x-Y.
Lemma 5 Let p>1 be a fixed real rumber, and x, ¥y €X. Then the following
are equivalent.
(1) x1 .-y implies x| ;¥;
(2) x1.,y implies x_|_;,¥y.
Proof To prove (1)=-(2) let us first show that if (1)holds, then X is strictly

convex (X is called strictly convex if 0<k<l, x#ycX imply [kx+ (1-k)y| <

klxil+ (1 —-k)lyl). If not then there exist xsycX such that |x|| = |y = ” ')L;y

=1,and it follows x--,,y. By Theorem 1 there exists a number a=0 such that

x| sax+y, ie.,

lx +ax+ ) # = %7 + fax +¥|7 = 1 + Jlax +¥]°. (7)
Therefore x |_,ax+ y, and since (x| = ||y, |a{= {{z‘lll -=1. From equation (7) we get
1+ a)éc +y | f
@+a)y?=(2+a)f| h =1+ fax+y)°=1.
That means a== — 1. Thus a= - 1. Then, from (7)

L= {yl?=lix—oll* + 1,
which contradicts the assumption that x=+y. Thus X is strictly convex. Now
suppese that(1l) does not imply (2), Then there exist x,y €X such that x1 ,y but
x1;4y. By Theorem ] we can choose as#0 such that x| .ax+y. But then, by(])
x| ,ax+y. Thus x| ,v and x| ;,ax+y, contradicting the uniqueness of isosceles
orthogonality in strictly conver spaces proved by Kapoor and Prasad ([6],
Theorem 3).Hence (1)=(2).

We now prove (2)=(1). If not then there exist x,y€X such that x| ,,y
but xi,y. We can choose bz=0 such that x| ,bx+y. But then by (2) x1 ,,bx+y
Thus x.1,.y and x| ,.bx+y, contradicting the uniqueness of L’-orthogonality.
Hence (2)=>(1) .

Corollary ¢ Let p>1 be a fixed real number. If L’-orthogonalty implies
isosceles orthogonality in X, tnen X is a uniformly convex space.

It follows immediately from Lemma 5 and corollary 4.

Corollary 7 Let p>1 be a fixed real nwmber. If [’-orthogonality is
homogeneous in X, i.c.x] ;v implies ax_{,,by for all real numbers a and b,
then X is a uniformly convex space.
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Theotem 8 Let p>>1 be a fixed real number. If 1’-orthogonality is additive,
ie,x1,,y and x| ,,z implies x_| ;,y+z, then it is also homogeneous.

Proof Suppose L’-orthogonality is additive and x| ,,y, where x and vy are
arbitrary elements. Then Theorem 1 gives the existence of a number ¢ such that
x 1 .cx—y. Additivity then gives x_[ ;,cx, and hence c=0 if x=0. Thusx_| ,,—y.
Also,y_ | ;,x because of symmetry of L’-orthogonality. Using additivity, we
find it now follows that nx_{  :my for all integers m and n. Thus [nrx|”
-
of J<]|? it follows that |x}? + Jky||? = |x +ky|® for all numbers k, or x_l, ky for
all k. Thus L*-orthogonality is homogeneous if it is additive.

Corolllary 9 Let p>1 be a fixed real number. If L”-orthogonality is additive

m |

+ {fmylf = [nx + my|?, or ||+ “ -y m

X+ ey

" From the continuity

n

in X, then X is a uniformly convex space.
Remark It has been proved by Day [7] and James [5] that X is a Hilbert
space further in the case of p=2 in these above corollaries.
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