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1, Introduction

Concerning the finite element analysis for linear and nonlinear parabolic equa-
tions there are a lot of papers, however, only a few of them devoted to the parabolic
problems with mixed boundary conditions. In[1],[2] and [3], the finite element me-
thods for some non-linear parabolic problems are systematically considered, but they
are mainly restriced to the cases in which the boundary ‘conditions are of Dirichlet
or Neumann type. In [4], the several Galerkin procedureé for parabolic problems
with mixed boundary are described but their theoritical analyses are not provided.

The author considered Galerkin methods in [5], 6], [7]'for linear, semi-linear
and some quasi-linear diffusion equations with mixed,.b‘oundary conditions and
given their error estimates by virute of solutions of some linear elliptic boundary
problems. In this paper, we try to improve and extend the results 'in [5]-[7] for
more general nonlinear equations than that in [7]. In §2, the semi-discrete Galer-
kin procedure is given and the solvability is discussed. In §3 and §4, the optimal
H! and L, error estimates by virute of space mesh parameter h are obtained respe-
ctively.

Consider the following quasi-linear parabolic equations

(1, 1) *%% =V e (k(x,u)Vu) +b(x,u) Nu+f(x,t;u), (x,t)Qx(0,T]

with mixed boundary condition

(1,2) u(x9t)=09 (X9t)€0Q1XEO,Tj;

K(X,u) VUL +0(X, U =g(X,t5u), (X,1) €FQ,x [0, T]
and initial condition
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(1,3) w(X,0) =uy(x), x€Q
where Q is a bounded domain with smooth boundary 9Q and satisfying cone condi-
tion in R*, 9Q=0Q,U9Q, and meas (§Q,)>0; T is a fixed positive constant;
b(x,u) = (b (x,u),by(x,u), -+, b, (X,1)); L= (¥Y,V5:-*,¥,) is the unit exterior nomal
of 9Q,; the functionsk, b;,, o and f, g satisfy the following assumptions which will
be reffered to as condition (A)),
Condition (A))
(i) There exist constants k,, k* >0 such that
0<ky<k(x,p)<k*, |bi(x,p)|<k*, V(x,p) EAXR, i=1,2,-,n,
(1, 4)
0<<o(x,p)<k®, V(X,p)€4Q,XR,

(iiy k, b;, f, o, g, satisfy uniformly Lipschitz condition with respect to the
variable p in Q and their Lipschitz constants are denoted by the same letter L: for
each t€ [0.T], f(x,t;0)EL,(Q) and g(x,t,0) € L,(3Q,), and also, f, g are continuous
in variable t; inital-value function u,(x) € H!(Q), where

H!(Q) = {v: vEHY(Q), v],5,=0}
and H'(Q) =W,,.(Q),
they are usual Hilbert-Sobolev spaces, the norm on H"(Q) be denoted by |.||,, the
subscript will be omitted in the case r=0.

Analogously, let H'(3Q) denote the Sobolev trace space on gQ with norm
{I*1l..,0. Specifically in the case r=0, H°(§Q) = L,(3Q) and

10l,00= [ v7ds,
aQ
Let X be a Banach space, @(t) be a map: [0,T]—+X, define
T e
(90 2ot 0 219l = ([ 1915 rat)
(Ol mio i 2101w = sup @] (),
o<t<T
For convcnience, we use the abbreviation nations
NPl Lo =Pl o cons 1PhL =Pl 2o
and u(t)==u(x,t), b,(w)==b,(x,u), fluy=f(x;t,u) etc.
The weak form of problem (A) is of the following: find a map u(#): [0,T]—~
H!(Q) such that
(gl: , v)+a<u: u;v) = (bW« Vu,v) + (f(w),v) + <gm),v>

(1.5) YoEHI(D,0<t<LT (B)

herein (w,v) :j werdQ
Q
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{1,6) a(Q; w,v) =Lk(x,Q)Vw -V'vd0+‘[ o(Q)wuds,
. IR,

{w, v) :j wuds,
a0,
From condition (1,4)
1,7 ke v 1 <a(Qs v, ) <k*(Jloli} +|[v]l3,50 ), VQ,vEHLI(Q)
‘where the semi-norm

l,UIZ = (V'v,V'I)) = Z“vm %2.

i=1 :

We shall always suppose that the solution w(t) of problem (B), that is, the

"wgak solution of problem (4), exists uniquely. Throughout this paper, we shall

use letters C, C:, &, &; to denote generic constants which with different values in
different inequalitys.

2 The semi-discrete Galerkin approximation and its solvability
Let S,(Q) =span{¢,,d,, -, ¢y} CTH.(Q) denote a finite element subspace, where
‘basis functions {¢;} satisfy hypetheses.
(2,1 $:CC@NHID, YA (0,1), Vil n<+00, i=1,2,,Ny,
The semi-discrete Galerkin approximation for problem (A) is defined as a map
Ut): [0,T]>S,(Q) and satisfies
%, V) +a(U; U, V) = (B(U) VU, V) +fU, V) + {8, V) f
(2.2) VVES (@), 0<t<T |
U0) = $,€5,(Q), ¥ is given using appropriate procedure*:. |

Na Na
Set U(t) = Da,(t)d;(x), ¢,=Da¥d;(x) and substituting it into (2,1) get

(=1 i=t

dg - F ]
e+ aa = aya a
2.3 B it A@a E(~)~+~(~)E
2(0) =g° }
where

a(t) = {ax(t)),az(t)’ "'9aN/.(t)}, [ AR {a§0)9 aém’ "”a;v?,);}’

B= E(d)nd’i)]Nnx’\’n A(Z) =[0(§as¢s; i d)')]
1
Na
E (g) = [(P'Za‘¢‘).v¢i’¢i]~nx1vm

E (@) ={(f($“s¢s)’ “"‘)}Afm )

Lemma 1 On space H!(Q), the norm ||v|], and semi-norm |v|, are equivalent
«[6], [7Di
#, The detailed description on 9, see (3,24)-(3,25) in §3,

Nax Na,
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Lemma 2 For an arbitrary fixed element Q € H}(Q), the bilinear form a(Q;
v, w) is symmetrical positive definite and bounded on H!(Q) x H!(Q)under condi-
tion (A). ([7D

Theorem 1 Suppose that Conditions (A,) and (2,1) hold, then the solution
U(t) of problem (C) is existence unjquely.

Proof Obviously, equation (2,3) can be written as
(2,3 % -Gwen, sw=gv,
From assumption (A,), every component G;(2;t) of G is ‘continuous in variables
a,,a,, -,y and t; then follows from the theory of ordimary differential equations
that e;(t) (j=1,2,-,N,) exist and a;(¢) €C'[0,T].
" In order to prove the uniqueness we assume that the problem (C) possesses solu-
tions U and W, Let 8=U-W then from (2,2)

'%%, V)+a(U;B,V) =a(W;W,V) -a(U; W,V) + (B(U)« VU -B(W)VW;V)

(2,4) :
+ (fU) - (W), V) +{gU) -8(W), V>, YVES(R),0<t<T,

From lemma 1, (1,7) and (2,4) with V=8, it is easy to show that there
exists k,>0 such that

(#,) the left-hand side of (2,4) >~;~-‘—ddt—]l;3§i2+k01|BﬂZ_

Using Condition (2,1) and note that a,(t) €C![0,t] we see that

" ow (oW
i wirey e SU 14l (LY, e ,t}< _
VWl = °<'<pT 9%, Lm(m( ) ’ l ‘ 0x Lm(Q)( ) M, = const,
Wl Loz 2 <M, = const,
Thus applying inequality ab\<\ea2+~alé~ 2 (Ve>0) and the trace inequality in

H!(Q) we can get

a(W; w, B -alu; W,8) <M1Lj02§ Bl "%f‘dQ'FMzLJ Bds
Ty i £

(%)
<c/(ellBllt +~5181°).
Clearly,
(%) . - FWL,B<LIBI*:s <& —8(W),ﬁ><CHBH§_.

Applying the interpolation theory for Sobolev spaces ([107])

(%) BW) —g(W), ﬁ)<Cg(€i|B“%+“41?”BHZ)

(Q(U)-VU—Q(W)-Vw,B)S_k*LZ 1Bl - fﬁx.jdﬂf‘MlLJoB‘de
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- (*5) <c(elBls +— 5 1812).

Combining (2,4) with (%) —~ (*#;), we have

-2 181 +kaliBl <c(elBl: + —5-181%), o<t<r.

Choosing ¢ such that Cce<k, and notice that 8(0) =y (0) - w(0) =0, then
%f—-nmn2<t><clnﬁ:v<t>, B(0) =0,
thus B(t)=0, the uniqueness is proved,
3 The H!—error estimate

i Let u(t), U(t) be the solutions of problems (B) and (C) respectively, Assume
that

3,0 @]l L Lmcaan <+ 005 VU]l Loirmien<< + 0,
Let W(t) be an arbitrary differentiable map [0, T]—S.(Q) and let

e=u-U; N=u-w; E=yU-w.
From (1,5)

—W~, V) +a(Us W3 V) = (), V) +{gw), V> +a(U; W, V) —a(u;u,V)
+ @ vu, v -(Sv),  vves, o<i<r,
substracting this equation from (2,2) we get
—%‘E‘», V)+a(U;E.;V) = (f(U) - f(u),V) +<{gU) — gW), V) +a(u;u, V)
(3,2)
on
—a(U; W, V) + @) «VU-b@w)-\Vu, V) +

- at ’
Replacing v by & in (3,2) then

), VVES(Q),0<t<T,

d
(3,3) the left-hand side of (3,2)2% “ap llel® +kollE

and
(3,4) (Fw) - fay, e)y<<c (el +Iml*,
(3,5) B - 8w, 5><LJ’ |£1dS<c iz + 1
<C,Le|lEll} + ~48 CllEN* + |y,
ﬂ From assumption (3,1) .
' (3,6) a(u;u, &) - a(U; W,&) =a(u;u, &) - a(U; u, &) +a(U; u, &) —a(U; W, 8)

<csellellt + 5 el + I |,
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(3,7) (b)) s AU - b(W) + VU, &) = (B(U) e VWU -W),8) + (BW) V(W -u),8)
+ ((b(w) =bW))Vu,8)=I, +I, +1s,
n<ct(celeli + 5180,

L=ctdnl: + &,

From (3,1)
L=<ci(|&]* +lml*.

Therefore
(3,8) B>+ VU=~ bw- Vi, ) <C.{elelli + 5 (el + Il D],
And also,

an an 1 ]].8m|*
3,9 Se)=<|| SH|]_ ren=enan + 1 5H ]
Combining (3,2) with (3,3), (3,9) we obtain

1 d 2 : 1 2 an |1*
(3,10) o ae el el <cfengn: + - (len + i+ |97 1] ),

where C dependent on ||| wizewons | VU] Lezwoy DUt it is independent of %k and
W . Choosing ¢ sufficiently small then

3,11) gl ngni<eigrs i+ |54 L

Integrating (3,11) from t=0 to t=1 and written variable 7 as t, applying Gron-

2
}o
Lai~y
2 }
.
LitH™Y

313)  lelzaws + el am=<c{ 1810 + [l 0u. + e 1B 1.

wall inequality, then

¢
(3,12) et + [l ar<ca{Iel @ + Il + | |53

Therefore

1€l zamizo + &0 2 =<C: {IIENZ CO) + 1Ml 2y + ! ‘%3—

By the triangle inequality

To sum up, we have

Theorem 2 Suppose that condition (A;) and (3,1) hold, then there exists a
constant ¢ which is independent of % such that for every differentiable map W (1),
[0, T]->S,(Q), the following estimate is true:

(3,14) o =Ullrwzn +l=Ullam<C {”U(O) -WO I+ -Wliwan

}o
LyHY

To estimate the approximation order for error u-y7, we make further assumptions
which will be reffered to as

'_QLVY)_
ot

# = Wil + |
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Condition (A,)
(i) Conditions (2,1) and (3,1) holds;

(ii) ucL,(HD), *‘"’*ELZ(H' 1, wyCH "1(Q), where r=2;

(iii) §,(Q) is taken from a family of finite element space of class §, ,(Q),r=>2,
that is, §,(Q)CH!(Q) and there exists a constant ¢>( such that for each vC H!(Q)
NH'(Q), p<li<r, p=0,1, the following inequality holds
(3,15) inf |lo-x|,<ch'~*ljv||,.

XESAD)
(iv) Boundary §Q is regular enough such that for every € H'(Q) the boundary
-value problem

—AP+P=9 xcQ N

(3,16) ap /

¢ og,~0; Y lse.” )‘
possesses an unique weak solution ¢ € H3(Q) N H(Q)® which obeys the priori-estimate
(3,17) llells=<cllvlli.

Now, we take W (t) to be H!-projection into §,(Q) of u(t) at each t&€ [0, T],
that is, W (t): [0,T]—>S;(Q) and satisfies
(3,18) (VW -u),VV)+ (W -u,V)=0, YVES,(Q),
Obviously, W(t) defined by (3,18) exists uniquely, moreover, W(t) is differen-
tiable in variable ¢ as well as u(t),

From Conditions (A4,) (ii), (iii) and definition of W (1)

7l (2) = [lu-wili(¢) = inf flue) -xll,<ch" Yul, ).
ZESaQ)

Thus
(3,19) Nl Lo <<CR™™ M4l £t

Si w ' ou i .

ince bt is H!-projection into S,(Q) of 9t ° from Condition (A,) (ii),
(iii),

rme |} 00 |}
(3,20) 5| <o+ |55 (¥ t€ (0, TD
r—1

It is easy to prove ([9])
Lemma 3 Let W(t), [0,T]—~S,(Q) be a map defined by(3,18),then under con-
dition (A,)

(3,21) |5t

ou

ot

<Ch’
Li(HY |

Las™ Yy
Notice that

Iz = [[]12C0) +2J' ( 9L, n)dx

#) Obviously, @ exists and is unique. If Q is convex-polygon or C3% -domain, inequality (3,17)
is obeyed ([61). '
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and

L)< |Gl i

Using inequalites (3,19) and (3,20) we have

(39 22) ”’"”Lm([,,) <Ch‘r_lo
Choosing 7(0) = € S,(Q) such that
(3,23) IEN0) = lU0) ~ WD)l = [l W(0)[[<Ch™*,

To the end, it is sufficient to take ¥,= W (0), here W(0) is defined by
(VW (0) —uy), VV) + (W(0) -1, V) =0, YVES,(Q),

For simplicity, we can take y, to be L,-projection into S,(Q) of u,, that is,

(Pg—uy, V) =0, NVNVeES (@),

From inequalitys (3,13), (3,19), (3,21)—(3,22), we obtain immediately the fol-
lowing

Theorem 3 Suppose that Conditions (A;) and (A,) hold. If initial value
function U(0)=1y, is choosen such that inequality (3,22) hold then the optimal
H!-estimate
(3,25) l“ = Ullruczo + l#=Ullr,am<<ch"™!
is true, where ¢ is independent of h and U,

4 The L,-estimate for error u-y

We now wish to develop an [,,-estimate for error u-p,

Condition (A;)

(i) Conditions (i) (ii) and (iii) in (A,) hold; moreover, uCL.(H")

(ii) k(e,u(,1))),, (k(s,u(s,t))),, and (k(X,u(x,t))).,€L.(Q@x[0,T]),

(0, (+,))) € La(3@ X [0, T])5 5b: (%, 8%, 1)) €La(@X [0,TD), 1= 1,2, h.

(iii) For each yC H'(Q) and each YCH'*3(3Q), 1=0,1, the linear problem

(4,1) a(u(t);d,v) = (P,v) +{V,v>, VoEeH(Q),(Vt€[0,T]
exists unique solution ¢CH'*2(Q) NH!(Q)*® which satisfies the reqularity estimate
(4,2) lloll i o<<C{U#ll + 171111, 50}

here ¢ is independent of ¢ and ¢.
Now we take W(t) to be Galerkin projection into S,(Q) of u(z), that is, W(¢):
[0,T]—>S,(Q) and satisfies

(4,3) a(u(t); W(t),V) =au(t);u(t),v), YvesS,(Q),

Using Lemma 2 and Lax-Milgram theorem, we see that W(¢) exists uniquely

#) From Lemma 2 and Lax-Mijgram theorem, we seec immediately that the solution of problem

(4,1) exists uniquely.
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and it is a differentiable map [0,T]—>S,(Q).
Let n=u-~W, E=y-W a:ain. First at all, we estimate norms

[l am |

ez IleCH 2020, |51

LaH ™Y,
Since a(u(t);+,+) is positive definite and bounded,

flall (&) <B inf flu- x|l (&) <<Ch'jull, (1),
XESAD)

It is follows from Condition (A,) (iii) and applying Nitsche method that
il @) <chln) i <ch'ilu, (t)
and
(4,4) M Lo <SCR 8]l cctir
Using the technique which is used to prove Lemma 4 in [8] we can prove
Lemma 4 Let S,(Q)C§,,(Q), u&L,(H), p=2, +00, and W(t) be the solution
of problem (4,3) then under Conditions (A;) (i) and (A,;) (iii) we have
(4,5) 1M 2 oartaon = 14 = Wl Lowr-Yoon <Ch'||8]l Lo, P=2, + 00,
The detailed proof for Lemma 4 is omitted (see [87).

In order to estimate the norml —— |
L. <H“)

, differentiating (4,3) with respect

to t yields
dk
(4,6) a(uty; G v)= - | SFvn-vvaa - . o%-n-vds,
Taking vV to be x—;?—v:’, here x is an arbitiary element in S,(Q), then
an an an W
4,7 a(v)s-5i 51)= -a(w)s G-

—tvn-v(x— )d.Q LQ a(x- % )ds.

Using Condition (A4,;) (ii) and the trace 1nequa11ty, we get
2
RALD)

°| 75t :<C{el T (ll

choosing ¢ sufficiently small then

k

wor |G| <clmh e [155-x] Jeer (e + |5 )
Vte[0,T1.
Let ¢ be an arbitrary element of H!(Q), @¢(t) be the solution to the following
problem

a(u(t);‘P(t)’”):“ﬁ’v)’ V'UEH‘&(.Q).
Choosing v =41/5t, then

n 7
(4,9 %)= a(u),0-1, 57 )+ a(ut); , 5 ) =L+ I, x€5Q),
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where

Il=a(u(t);¢-x,%)< CY

an
S| 1o -x.
Noting that ® CH3(Q) NHL(Q) and from (4,8)

(4,10) L<Ch *h|o|s<C.h"||¥],.
In addition,

n<a(uct)s 1,57) = a(ut), S1x) = - [ T¥-vn.vrda

f0 ok do
- 99 pyds = — | 22 71, - - 99 piy_
La. 5t ™xds Jot VIV -9)da La 5t 1 -@)ds
ok 90
- Q—‘agt—v?vadQ ‘J'JD‘_ETﬂWdSEJI"‘Jz'f'J;;"'Jh
Obviously,
(A) Ji<ctnfly-llx - ol

After integration by parts we have
- 0k . . — ok . 39
Iy = —L FTRAALECH LI T PRTeH L II<P||1+LQ' Zl gt M5 Vi9S.
Applying the duality of H?(30Q) and H %(0)

[ 3% 27 as<CHIM-4.00l VOl3.00<CHIM 1,00l VRN SCEI- 0]l

i=1

Hence

(Az) Ja<<CT ([l + 11l -3,0) 1l
Like wise,

(A3) Jo<CE (1Ml -g,00° 1® - %l1),

1L<Ci M -4.00ll®l < CEIM] 1. 20l1®lls0
Combining (4,6) with (A)), (A,), (Ay), using Lemma 4 and note that
inf |lo x|, <ch’lolls;<Ch?|¥|,
XESA(L)
we have
(4,11) L<C;h'||9]l.

Substituting (4,10), (4,11) into (4,9) yields

(%%’¢)<Ch'll¢lh VYEH' ().
Therefore we get
Lemma 5 Let u(t) and W(t) be the solutions for problems (B) and (4,3)
respectively, then under Conditions (A;) and (A,)

6(u:W) _ ’ an

“4,12) ’ 8t LaHb ot

at <Chr ’

‘ Leas
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where constant C is independent of % and W.

To derive the L,-estimate of u-y, further assumption is required yet.

Condition (A,) There exists constant K which is independent of # such that
for each K<€ (0,1), the solution w(t) for problem (4,3) satisfies
(4,13) IVWI Loz <K,

It is able to show that under Condition (A;) (i), for considerable general fini-
te element Sspace satisfying inverse property, condition (4,13) holds (8ee[9]),
specific examples can be found in [3].

Using the same treatment as in §3, we have

(4,14) BE, V) +aWi & V) = (FW) - FW),V) + EW) ~BW), V) +a(u; 4, V)
~a@, W, V) + B@)- VU -2 Vi, V) + (-5 V).
Choosing V =£, reserving estimates (3,3), (3,4), (3,9) in §3 and anew estimate

the terms 2-nd, 3-rd and 4-th on the right hand side of (4,14),
Indeed, it is easy to see that

(4,15) @@ -8 & > <C:{ellEll + o UEI* + 1124000},
From Condition (A,),
a(u;u, &) —a(Us W,8&) =a(u; W,8) —a(U; W, 8)

<ca{ells + —-dmli + g1} + |, to) o1 weas |.

Now

lj o) —a(u)]ngS‘ = | —j [o(U) - o (u)InEdS +j [o(U) - o (u) TuEds)|

1Ja@, 30, 29,

<ci{elelit + 5 EI* + 10200 o
Hence :
(4,16) a(u;u,8) - 6(Us W, 5) <C{ellEll1 + + 2+ 2000 }.
Set
(4,17) J=(BWU-VU-bw)+Vu,&) = (b)) - (VU - VW), 8)
+ (B (YW = V1), &) + ((BU) =b(®))s Vb, &) = I, + I, + T,

Obviously
(o0) 1< (elens + - 18l?).
Since VU]l Loz << + 00y
(*,) ' T,<T5CIEN® + I *).
And also, '

Jo= — (b(U)* VN, &) = ([b(w) ~b()] VN, E) - (b(w)sVNM,8) =01+ Q,.
Using condition (A,) we have ||V p.1a<+ oo, thus
(%3) o,<crEl” + lim®).
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Integrating by parts for term Q= - (b(u)+\/N,&) and applying the same treat-
ment as used to deriving inequality (4,15), Wwe can get an estimate for Q,; then
combining it with (#;) we have

() 1< Eo{elelt + L CIE+ il + 23000 .
Therefore
B> VU b Vi, &) <Co{e 8113 + eI + ) + 24,000 .
Add up, we obtain

d 7 2
(4,19) grler +lgnt< c{igl® + Inl® + 2.0 | |53 "}
Applying Gronwall inequality and triangle inequality we have
(4,20) lelltezo < C{iMlitecs + || GE| | +I0E wkoon + 12O}

Using (4,4), Lemma 4 and Lemma 5 then

t om .
(4,21) M ez + ' %t_ + 1M 2.2 9000 <CR',
L:(H™
Choosing initial value function [y (0) = 3, £S,(Q) such that
(4,22) IECO) ] = [l% - W (D) || <Cyh',

where W(0) is solution of problem (4,3) at t=0. From (4,20),(4,21) and (4,22)

(4,23 Nell zwizn = 18 =Ull Lz, <Ch',

To sum up, we obtain the final result

Theorem 4 Let u, U be the solutions for probleme (B) and (C) respectively,
if initial value function y(0) =y, satisfies inequality (4,22) then under conditions
(A, (A;) and (A,), error u-U possesses optimal L,-approximating o'rder with
respect to h, that is

[[u - U“ Lm(L,)gchr

whete C is a constant independent of h and U.
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