On the Uniqueness Theorems for the Closed Convex

Hypersurfaces in a Space of Constant Curvature*

Li An-Min (李安民)

(Sichuan University)

In this paper we generalized the uniqueness theorem of Alexadroff-Fenchel-Jessen, the Cohn-Vossen theorem and the Hilbert-Liebmann-Hsiung theorem to hypersurfaces in a sphere δ^{n+1} or a hyperbolic space H^{n+1} .

First of all, we generalized the uniqueness theroem of Alexandroff-Fenchel-Jessen as follows:

Theorem 1 Let Σ , Σ' be two closed, strictly convex hypersurfaces in a Euclidean space E^{n+1} , $f:\Sigma\to\Sigma'$ be a diffeomorphism such that $\mathbb{H}=f^*\mathbb{H}'$, \mathbb{H} and \mathbb{H}' being the third fundamental forms of Σ and Σ' respectively. If for a fixed r, $P_r=P_r'$, then f is a rigid motion (including a possible reflection), where P_r' is the P_r' is the P_r' is the P_r' is the P_r' in the P_r' is the P_r' in the P_r' is the P_r' including a possible reflection.

We derived some integral formulas for a pair of hypersurfaces in S^{n+1} or H^{n+1} by which we proved some uniqueness theorems. Our main results are:

Theorem 2 Let Σ , Σ' be two closed, strictly convex hypersurfaces in S^{n+1} , $f: \Sigma \to \Sigma'$ be a diffeomorphism such that $\mathbb{I} = f^* \mathbb{I}'$.

- 1) When $n \ge 3$ f is a motion.
- 2) When n=2, if $P_1 \gg P_1'$ then f is a motion.

Theorem § Let Σ , Σ' be two closed, strictly convex hypersurfaces in S^{n+1} $f: \Sigma \to \Sigma'$ be an isometry.

- 1) When $n \ge 3$ f is a motion.
- 2) When n=2, if $S_1 \gg S_1'$ then f is a mosion.

Theorem 4 Let Σ be a closed, strictly convex hypersurface in S^{n+1} . If $S_r = const$. for a fixed r, $1 \le r \le n$, then Σ is a sphere.

Theorem 5 Let Σ be a closed, strictly convex hypersurface in S^{n+1} ; If

^{*} Received Mar. 15, 1983.

 $\frac{S_r}{S_r}$ = const. for two integer r and $\tau, 1 \le \tau < r \le n$, then Σ is a sphere.

Let H^{n+1} be the (n+1)-disc $x_1^2 + \cdots + x_{n+1}^2 < 1$ in Euclidean space E^{n+1} , define the hyperbolic metric in H^{n+1} as follows:

$$g(V,W) = \frac{4V \cdot W}{(1-||x||^2)^2}, \qquad x = (x_1,\dots,x_{n+1}) \in H^{n+1}.$$

$$||x||^2 = x \cdot x.$$

where the dot product on the right hand side is the usual dot product on E^{n+1} , it is well known that H^{n+1} is a space of constant curvature -1. We proved.

Theorem 6 Let Σ , Σ' be two closed, local strictly convex hypersurfaces in H^{n+1} $f:\Sigma \to \Sigma'$ be a diffeomorphism such that $\mathbb{H} = f^*\mathbb{H}'$.

- 1) When $n \ge 3$, Σ and Σ' differ by a motion in H^{n+1} .
- 2) When n=2. If $P_1 \gg P_1'$ then Σ and Σ' differ by a motion in H^3 .

Theorem 7 Let Σ be a closed, local strictly convex hypersurface in H^{n+1} . If P_r = const. for a fixed $r, 1 \le r \le n$, then Σ is totally umbilical.

Theorem 8 Let Σ be a closed, local strictly convex hypersurface in H^{n+1} . If

$$\frac{P_r}{P_r}$$
 = const. for two integers r and $\tau, 1 \le \tau < r \le n$, then Σ is totally umbilical.

Theorem 9 Let Σ, Σ' be two closed, local strictly convex hypersurfaces in H^{n+1} , $f: \Sigma \to \Sigma'$ be an isometry. Suppose that $(0,0,\dots,0)$ is an interior point of Σ , and $y_{n+1} > 0$ everywhere, where $y_{r+1} = g(x, e_{n+1})$ is the support function of Σ .

- 1) When $n \ge 3$ Σ and Σ' differ by a motion in H^{n+1} .
- 2) When n=2. If $S_1 \gg S_1'$ then Σ and Σ' differ by a motion in H^3 .

Theorem 10 Let Σ be a closed, local, strictly convex hypersurface in H^{n+1} . Suppose that $(0,0,\dots,0)$ is an interior point of Σ and $y_{n+1}>0$ everywhere. If $S_r = const$. for a lixed r, $1 \le r \le n$, then Σ is totally umbilical.

Theorem 11 Let Σ be a closed, local strictly convex hypersurface in H^{n+1} , If $\frac{S_r}{S_r}$ = const. for two fixed integers r and τ , $1 \le \tau < r \le n$, then Σ is totally umbilical.

Let Σ be a closed hypersurface in S^{n+1} , there are two global unit normal vector fields $e_{n+1}(x)$ and $e_{n+2}(x)$ over Σ , where $e_{n+1}(x)$ is tangent to S^{n+1} , and $e_{n+2}(x)$ is parallel to the radius vector field of S^{n+1} . The map

$$G: \Sigma \to S^{n+1}$$

$$x \mapsto e_{n+1}(x)$$

is called the Gauss map.

Theorem 12 Let Σ be a closed, strictly convex hypersurface in S^{n+1} , G be the Gauss map. Put $G(\Sigma) = \Sigma^*$, we have

- 1) $G: \Sigma \to \Sigma^*$ is a diffeomorphism and $G^2 = I_d$.
- 2) Σ^* is a closed, strictly convex hypersurface in S^{n+1}
- 3) I * = II,

 - $\mathbf{II}^* = \mathbf{I}.$

References

- [1] Stoker, J. J. On the uniqueness theorems for the embedding of convex surfaces in three dimensional space. Comm. On Pure and Appl. Math. 3(1950), 231-257.
- [2] Chern, S.S., Integral Formulas for Hypersurfaces in Euclidean Space and Their Applications to Uniqueness Theorems. Shiing-shen Chern Selected Papers, 269-277.
- [3] Chern. S. S., An uniqueness theorem on closed convex hypersuefaces in Euclidean space, Shiing-shen Chern Selected Papers, 279—282.