Interchanges and Invariant Positions in 21, (R,S)*

Wan Honghui (万宏辉)

(Huazhong University of Science and Technology)

Let $C = (c_{ij})$ be an $m \times n$ (0,1) - matrix. Let $R = (r_1, \dots, r_m)$ and $S = (s_1, \dots, s_n)$ be nonnegative integral vectors. Denote by $\mathfrak{A}_C(R,S)$ the set of all $m \times n$ (0,1) - matrices $A = (a_{ij})$ satisfying $a_{ij} \geqslant c_{ij}, a_{i1} + \dots + a_{in} = r_i, a_{1j} + \dots + a_{mj} = s_j$ for $1 \leqslant i \leqslant m$, $1 \leqslant j \leqslant n$.

Consider the following $t \times t$ matrices.

$$\mathbf{i}) \begin{pmatrix} 0 & 1 & \mathbf{\hat{U}}'s \\ \ddots & \ddots & \\ \mathbf{\hat{U}}'s & 0 & 1 \end{pmatrix} \qquad \mathbf{ii}) \begin{pmatrix} 1 & 0 & \mathbf{\hat{U}}'s \\ \ddots & \ddots & \\ \mathbf{\hat{U}}'s & 1 & 0 \end{pmatrix}$$
 (1)

where ① denotes element 1 of C. Replacement of a submatrix i) by ii) or vice versa leaves the row and column sums unchanged. A t-interchange is such aureplacement or any version of (1) obtained by applying the same row permutation to both i) and ii).

Theorem 1 Let u be the maximum of row and column sums of C. Given a pair $A, B \in \mathfrak{A}_C(R,S)$, one can get from A to B by a series of k-interchanges for $2 \le k \le u + 2$, without leaving $\mathfrak{A}_C(R,S)$.

The position (e,f) is an invariant 1 provided all of the matrices in $\mathfrak{A}_c(R,S)$ have their (e,f)—entry to 1, which is not 1 of C.

Theorem 2 Suppose (e,f) is an invariant 1 of $\mathfrak{A}_{\mathcal{C}}(R,S)$. Then there exist $e \in I \subseteq \{1,\dots,m\}$, $f \in J \subseteq \{1,\dots,n\}$, such that for every matrix $A \in \mathfrak{A}_{\mathcal{C}}(R,S)$, A[I,J] is the matrix of I's, $A[I,J] \neq C[I,J]$ and $A[\overline{I},\overline{J}] = C[\overline{I},\overline{J}]$, where $\overline{I} = \{1,\dots,m\} - I$ and $\overline{J} = \{1,\dots,n\} - J$.

Theorem 1 reduces to Ryser's Interchange Theorem^[1] and Anstee's results^[2] when C = 0 and C = P, respectively. Theorem 2 generalizes a result of Ryser on $\mathfrak{A}(R,S)^{[1]}$.

References

- [1] Ryser, H. J., Combinatorial Mathematics, Chapter 6, Carus Math. Monographs, No. 14, 1963.
- [2] Anstee, R. P., Canad. J. Math., 34 (1982) 438-453.

^{*}Received June 12, 1984.

 $^{^{+}}A[I,J]$ denotes the submatrix of A whose rows are indexed by I and whose columns are indexed by J.