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Solving Large Sparse Linear and Quadratic
Generalized Eigenvalue Problems™
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(Fudan University)

We study the methods for solving the following large order eigenvelue pro-
blems occurring in the analysis of structural vibration!¢!*;

(K-AM)Xx=0, (1)
(MA2-CA-K)X=0 (2)

and
(MA® +CA+K)x=0, (3)

~

where M and C are both symmetric matrices, while ¢ is skew symmetric, More-
over, M is positive definite, and the matrix K in (2) and (3) is also assumed to
be symmetric positive definite,

I The eigenvalue problem for normal matrices in generalized inner prduct

Let B be an nxn Hermitian positive definite matrix. Then

(x,y)= (x,By) =y"Bx (4)

is called B-inner product, We can define B-norm, B-normal matrix, B-Hermitian
matrix, B-skew Hermitian matrix and B-unitary matrix as usual,

Theorem 1 nxn matrix G is B-normal if and only it

B 'G"BG = GB~'G"B. (5)

While the fact that G is B-Hermitian, B-skew Hermitian or B-unitary is charact-
erized by GFB=BG, G"B= —BG or GHB=BG"! respectively. If n xm matrix F con-
sists of m B-orthonormal vectors as its columns, then the project matrix of G de-
termined by F is FFBGF. If G is B-normal, then it has a full B-orthonormal sys-
tem of eigenvectors, If the B-unitary matrix with these cigenvectors as its col-
umns is denoted by Q, and the diagonal matrix consisting of the corresponding
eigenvalue is denoted by A, then
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Q¥BGQ = A, Q"GHBQ = A. (6)

Poof Suppose G corresponds to an operator and the matrix corresponding to
the conjugate operator in the B-inner product is G*, then from
(GX,¥)5=(%,G*Y) 5,
we have
(Gx,BY) = (x,BG*Y),
that is
G*=B"'G"B. (7)

From this we can easily arrive at all the conclusions of the theorem, Q. E, D,

Corollary If ¢ is B-normal, then G*G and G have a common full B-ortho-
normal system of eigenvectors,

Theorem 2 Suppose X is the nxp matrix whose columns are composed of p
vectors from a B-orthonormal basis of the invariant subspace for the B-normal
matrix G. Then the B-orthogonal project matrix XYBGX of G determined by X
is normal,

Proof Let the columns of the nx (n—p) matrix Y be the basis of the B-or-
thogonal complement to the space spanned by the columns of X, We have
Y#BX =0, X"BY =0,

[ﬁ: |Brx,va=1 (8)

and

xH [XHBGX

[YH]BG[X,Y] = (9)

YHBGY]’
Let [X,Y1=BV*[¥,¥], then from (8) we have

[g:][ﬁ,ﬁﬂ:[i’,?][gi], (10)

from (9) it follows that

X [X”BGX

RE[?H] B"GB[X,¥]1= YHch], (1D

But from (10) and (5) we get
b o X"
[?H ]B-“’G”BGB"“EX, ¥1= [?H ]B“’GB-IG”B”’D’Z, Y1=RR",

By (11) we also have
(XHBGX) ¥ (XHBGX) = (X¥BGX) (XMBGX)H, Q. E.D,
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From theorem 1 and its corollary and theorem 2 we can derive the following

Algorithm I (Subspace Iteration Method for B-normal Matrices)

(1) Take p random initial vectors (¢<<p<<n), B-orthonormalize them, and de-
note the resulting nx p matrix by Xx‘®, that is, X'*’¥BX‘=1,,

(2) If the (v-1)-th matrix X~V has been obtained, then the iterative pro-
cedure for finding X’ is as follows

(i) Compute z’=GX""-V,

(ii ) Compute pxp Hermitian positive definite matrix S’ =Zz"’Hpz’,

(iii) Pind all the eigenvalues and eigenvectors of S .

Q(V)Hs(v)Q(v) = (D<v))2’

where Q¢ is a pxp unitary matrix, D"’ is a diagonal matrix with positive di-
agonal elements which are ordered decreasingly.

(iv) Compute X"*V=Zz"’Q> (D'},

(v ) Test the convergence,

(3) Denote X‘’which has converged by X, Partition X as X=[X,*,X.],
where each X, corresponds to the eigenvalues which have an equal modulus, Com-

pute the B-project matrix X7BGX, of G determined by X, and solve the eigenva-
lue problem of the lower order normal matrix:

P?(X?BGXI)P} = AI-

At the end of this step we obtain eigenvector matrix X,P, and eigenvalue di-
agonal matrix A,.

Remark The analysis of the convergence in [8,11] may be adopted to the
present algorithm, provided that the usual norm is replaced by B-norm, It is the
generalization of that in [8], McCormick and Noe have rnade an analogous gen-
eralization [6], Obviousely, our way of generalization is more straigtforword.

For some special B-normal matrix G we can derive the following algorithm
(provided that they satisfy the condition: for any matrix Q with B-orthonormal
columns QYBGQ is normal. For exemple, if G is B-Hermitian or B-skew Hermi-
tian, then the condition is satisfied.)

Algorithm T (Subspace Iteration Method for B-normal Matrix)

(1) Take p random initial vectors (g<<p<{n), B-orthonormalize them, and de-
note the resulting nxp matrix by X, that is, X‘”"BX‘*’ =1,

(2) If the (v-1)-th matrix X~V has been obtained, then the iterative pro-
cedure for finding X’ is as follows

(i) Compute Z”’=GX"?,

( ii) B-orthonormalize the columns of Z‘~’ and get Q'’’:




30 BEHR 5T ' 19854

Z(v)=Q(v)R(v),

where the columns of Q¢’’ are B-orthonormal, and R’ is a px p upper triangular

matrix,
(iii) Compute B-orthogonal project matrix S‘*’> of G determined by Q'~°

S(v)zQ(v)HBGQ(v).
(iv) Solve the eigenvalue problem for the lower order normal matrix §‘'’:
P(V)Hs(v)P(v)=A(v).

(v) Compute X(y)zQu)P(v).
(iv) Test the convergence,
Remarks 1, When B is real and G is B-symmetric (or B-skew symmetric),
then
5§ = QVTBGO"’

is real symmetric (or skew symmetric). We can use the Jacobi-like algorithm in
[10] to perform step (2) (iv). The whole procedure of computation can be per-
formed with real arithmetic,

2. By an argument analogous to that used in [10] we can prove the conver-
gence of algorithm JI, When G is B-normal, the convergence rate is the same as
when G is symmetric,

For general B-normal matrix G, the Lanczos algorithm follows the same pro-
cedure as that of algorithm I: First, by applying Lanczos algorithm to G*G we
obtain some extreme eigenvalues and their corresponding eigenvectors, Then, by
using the B-orthogonal project metrices determined by the invariant subspaces
spanned by the eigenvectors corresponding to the eigenvalures with equal modulus,
we can obtain the eigenvalues and the eigenvectors of G.

The recurrence relation of Lanczos algorithm for G*g is

Bi+«1Bv;.+; =G"BGv;-a;Bv; - B,Bv;.,,
and the corresponding matrix form is
GHBGijBVjTj+Bi+lei+lei9

where V;=[v,,---,v,;] and T; is a symmetric three diagonal matrix

a, B j
B a; B l
Ti=ViGHBGV;=| " ™ ™.,
o By
Bi a;/
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For B-Hermitian G we can implement Lanczos algorithm directly to G, the
fecurrence relation is
Bis19i+1=Gv;~@v;~Bv;_,,
The corresponding matrx form is
GV,'=VjTj+ﬂi+lvi+leiy
and the three diagonal matrix T; is
T;=VIBGV;.
For B-skew Hermitian G, owing to the fact that iG is B-Hermitian, we can
implement the Lanczos algorithm to iG. )
I Generalized eigenvalue problem
By taking M as the matrix B in the previous section we can trans form the
linear generalized eigenvalue problem (1) into a standard eigenvalue problem in
M-inner product:
GiIX=M"1(K-0M)x=)x 12)
or
G X= (K - oM) "Mx = Ax, (13)

£ K is such that G, or G, is M-normal, then we can apply the algorithm in the
previous section in solving problems (12) and (13), Particularly, when K is He-
mitian, and o is a real scalar, G, and G, are M-Hermitian, When K is skew Her-
mitian and ¢ is a pure imaginary scalar, G, and G, are M-skew Hermitian,

For quadratic generalized eigenvalue problem (2) and (3), we can respective-
1y transform them into the following linear generalized eigenvalue problemst 4%

[12 i ][:x] ”[KM][;] (14)
S W EZ R [ 1

oK
The problem (14) in which [ X C] is symmetric has been studied in [9], We now

and

study the method for solving problem (3) i. e, problem(14), (15)may be abbreviated
to
AY = ABY, (16)
where B is symmetric positive definite, A is skew symmetric and A and B are of
the forms presented by (15),
Theorem 3 The eigenvalues of the quadratic problem (3) are all nonzero
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pure imaginary scalars with a half of them on the positive imaginary semi-axis and
the other half on the negative imaginary semi-axis,
Proof Make Cholesky decomposition B=LL7, where L is nonsingular lower
triangular, (16) is equivalent to
(L-'AL ")y = Ay, an
It is easy to show that A is nonsingular, Also,
. o) iK
ia=[ ]
-iK -ic
is Hermitian, By applying Poincaré separation theorem*® and considering the
fact that iA is nonsingular we can see that iA has »n positive eigenvalues and n
negative eigenvalues, From(17),we may apply the inertia theorem and the conclu-
sion of the theorem follows, Q. E, D,
It is most advantageous to take B-skew Hermitian matrix

(A -ioB) B, (18)

whete o is a real scalar, in finding some of the eigenvalues which are near ioc by

the subspace algorithm or Lanczos algorithm discussed in the previous section, We

shall show that it is not necessary to invert or to factorize a 2nx 2n matrix (c.f.
(18)),
Let

Wi(o) =K +i0C -0’M, (19)

Clearly, w(o) is an nxn Hermitian matrix, Then we may make the symmetric

decomposition
W (o) = LDL", (20)

whete D is a real diagonal matrix,

Theorem 4 Let o be a real scalar such that the decomposition (20) is possi-
ble, then, (i) The number of the negative diagonal clements of D is equal to the
number of the eigenvalues of problem (3) between (0 and io on the imaginary axis,

(ii)

x W IH0) (iCX; — OMX, +iMX
(A—iaB)-lB[ ‘]=-[ e ik 2>]. (21)

i
X, ~ W) (iIKx; + oMX,)

Proof When o0, we have

K ,
iA+UB=[I_ irjo 1 ][a —W(g)/g][l Uia]. (22)

By applying the inertia theorem and theorem 3 the first assertion follows.
By (22) it is easy to get
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I i -t
(A-10B) -IB[::] - i[ ‘I{O][K o - aW“(a)][ill/a I ][11:1’::;]

=i[x1/0+W"(0))(—Kx1/0+isz)]=i[W"(°) (i¢x, —amx1+iMx2)]
W-l(0) (- iKx, —oMX,) -W™ (o) (iIKX; + OMX;)

When o =0, it is easy to check that (21) holds. Q. E. D,

From Theorem 4 it follows that for solving problem (3), if we take B-skew
Hermitian (A -ioB) !B as the matrix G and apply subspace iteration algorithm I
or I, or if we take B-Hermitiam (iA +oB) -!B as the matrix G and apply subspace
iteration algorithm I or lanczos algorithm, then it is only mnecessary to com-
pute the triangular decomposition of the nx n Hermitian matrix W (g). Hence the
presented algorithms for solving quadratic eigenvalue problem are quite efficient,

Particularly, if we want to find some eigenvalues with minimal moduli, then
we may take o =0, and then A-!B is B-skew symmetric and w(0) =K, Thus we
can use subspace iteration algorithm T and perform the whole procedure with
real arithmetic,

Obviousely, the algorithms for B-normal matrix presented in this paper can
be used efficiently to solve the quadratic eigenvalue problems of a wide variety,
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