The Algebra of Pseudo-Differential Operator on the Functional Space $W_{\lambda} S_{0.5}^{m}$

Xu Zhao Chang (徐肇昌)

(The Worker's College of Shanghai Tractor and Automobile Corporation)

For popularizing the functional space $S^m_{\rho,\delta}$ which is common in use, a Frechet functional space $W_{\lambda}S^m_{\rho,\delta}$ is defined in this paper and an exploration is attempted on the algebraic characteristics of the pseudo-differential operators stipulated by the functional space $W_{\lambda}S^m_{\rho,\delta}$.

Definition 1 We say $P(x,\xi) \in C^{\infty}(R_x^n \times R_{\xi}^n)$ is a symbol of the functional set $W_{\lambda}S_{\rho,\delta}^m$ ($-\infty < m < +\infty$, $0 \le \delta \le \rho \le 1$, $\delta < 1$), if $P(x,\xi)$ has the property that for any multi-indices $\alpha, \beta \in N_0^n$ there exists a constant $C_{\alpha,\beta}$ such that

$$|P_{\beta}^{(a)}(x,\xi)| \equiv |\partial_{\xi}^{a} D_{x}^{\beta} P(x,\xi)| \leq C_{a,\beta} [\lambda(\xi)]^{m+\delta|\beta|-\rho|a|} \qquad \xi \in \mathbb{R}_{\xi}^{n}$$

in which the function $\lambda(\xi)$ must satisfy the conditions below:

$$\begin{cases} \langle \xi \rangle \equiv (1 + |\xi|^2)^{\frac{1}{2}} \leqslant \lambda(\xi) \leqslant K \langle \xi \rangle^{2m_{\bullet}} & \xi \in R_{\xi}^{n} \\ |\lambda(\xi) - \lambda(\xi')| \leqslant N |\xi - \xi'| & \xi, \xi' \in R_{\xi}^{n} \end{cases}$$

here k>0, N>0, $\frac{1}{2} < m_0 < \frac{1}{20}$ are constants.

Assume $P(x,\xi) \in W_1S_{\rho,\lambda}^m$, its semi-norms will be defined by

$$|P|_{l}^{(m)} = \max_{|\alpha+\beta| < l} \sup_{x,\xi} |P_{\beta}^{(\alpha)}(x,\xi)| \cdot [\lambda(\xi)]^{-(m+\delta|\beta|-\rho|\alpha|)} \qquad (l=0,1,2\cdots).$$

In addition, we say a set $B \subset W_{\lambda} S_{\rho,\delta}^m$ is a bounded subset of $W_{\lambda} S_{\rho,\delta}^m$, if

$$\sup_{P \in B} \{ |P|_{l}^{(m)} \} < +\infty \qquad \text{for every } l \in N_0.$$

Theorem 1 Suppose $P(x,\xi) \in W_1 S_{\rho,\delta}^m$, then the operator P defined by

$$(1) Pu(x) = \int e^{ix\xi} P(x,\xi) \hat{u}(\xi) d\xi u \in S(R_x^n)$$

is a linear continuous operator of S into S.

Proof Write $r(x,\xi) = e^{ix\xi}P(x,\xi)\hat{u}(\xi)$, we have

$$|r(x,\xi)| \le C|P|_0^{(m)}|u|_{2(m,m,+n+1)}(\xi)^{-n-1} \in L_1(R_{\xi}^n)$$
 $(m_+ = \max\{0,m\})$

which shows Pu(x) is meaningful for $u \in S(R_x^n)$. In view of $\xi_i P(x, \xi) \in W_\lambda S_{c,\delta}^{m+1}$, $\partial_{x,i} P(x, \xi) \in W_\lambda S_{c,\delta}^{m+\delta}$, $\partial_{\xi_i} P(x, \xi) \in W_\lambda S_{c,\delta}^{m-\rho}$, it is easy to see that there is no fun-

[•] Received Mar. 30. 1982.

damental difference between $x^{\tau}\partial_{x}^{\nu}Pu(x)$ and Pu(x). We can assert for any $\tau, \nu \in N_{0}^{n}$ constants $C_{n,\nu}$ and $l_{n,\nu}$ will be found, such that

$$|x^{\tau}\partial_{x}^{\nu}Pu(x)| \leq C_{\tau,\nu}|u| l_{\tau,\nu}$$

which means P is no other than a continuous operator of S into S.

Definition 2 A linear continuous operator P of S into S defined by (1) is called a pseudo-differential operator with a symbol $P(x,\xi) \in W_{\lambda}S_{0,\delta}^{m}$, which is denoted by $P(x,D_{x})$. An operator set consisting of the whole of such operators will be denoted by $W_{\lambda} \xi_{\rho,\delta}^{m}$.

Definition 3 Assume that a function $a(y, \eta)$ is well defined on $R_{y,\eta}^{2\eta}, \chi(y, \eta) \in S(R_{y,\eta}^{2\eta}), \chi(0,0) = 1$, if we have, for any of such $\chi(y,\eta)$,

$$|\lim_{\varepsilon\to\infty}\int\int e^{-i\gamma\eta}a(y,\eta)\chi(\varepsilon y,\varepsilon\eta)dyd\eta|=C<+\infty,$$

then the limit C is called an oscillatory integral of the function $a(y, \eta)$ which is expressed as

$$Os-\int \int e^{-iy,\eta}a(y,\eta)\,dyd\eta.$$

Definition 4 We say a function $P(x,\xi,x',\xi') \in C$ (R^{4^n}) is a symbol of the functional set $W_{\lambda}S_{o,\delta}^{m,m'}(-\infty < m,m' < +\infty,\ 0 \le \delta \le \rho \le 1,\ \delta < 1)$, if a constant $C_{a,\alpha',\beta,\beta'}$ and a function $\lambda(\xi)$ can be found for any multi-indices $\alpha,\alpha',\beta,\beta' \in N_0^n$ such that

$$|P^{(\alpha,\alpha')}_{(\beta,\beta')}(x,\xi,x',\xi')| \equiv |\partial_{\xi}^{\alpha}\partial_{\xi'}^{\alpha}D_{x}^{\beta}D_{x}^{\beta'}P| \leq C_{\alpha,\alpha',\beta,\beta'}[\lambda(\xi)]^{m+\delta(\beta)-\rho|\alpha|}$$

$$\bullet [\lambda(\xi) + \lambda(\xi')]^{\delta|\beta|} \bullet [\lambda(\xi')]^{m'-\rho|\alpha'|}.$$

where the function $\lambda(\xi)$ satisfies the condition (*) listed in definition 1.

For $P(x,\xi,x',\xi') \in W_{\lambda}S_{\rho,\delta}^{m,m'}$, we define its semi-norms by

$$|P|_{l}^{(m,m')} = \max_{|a+a'+\beta+\beta'| \le l} \inf\{C_{a,a',\beta,\beta'}\}$$
 (1=0,1,2,...)

in which $C_{\alpha,\alpha',\beta,\beta'}$ satisfies the inequality (2).

The following conditions are common to theorem 2-5: Suppose $P(x,\xi,x',\xi') \in W_{\lambda}S_{\rho,\delta}^{m,m'}$, $\alpha,\alpha',\beta,\beta' \in N_{0}^{n}$ arbitrarily, denote $\tau = m + m' + \delta |\beta + \beta'| - \rho |\alpha + \alpha'|$ and $q(x,\xi,x',\xi') = P_{(\beta,\beta')}^{(a,a')}(x,\xi,x',\xi')$, then we have

Theorem 2 A function $q_{\theta}(x,\xi)$ is well defined on $R_{x,\xi}^{2n}$ with $|\theta| \leq 1$ by

$$q_{\theta}(x,\xi) = Os - \int \int e^{-iy\eta} q(x,\xi+\theta\eta,x+y,\xi) dy d\eta.$$

Proof Choose $\chi(y,\eta) \in S$, $\chi(0,0) = 1$, put

$$r_{\theta,\varepsilon}(x,\xi,y,\eta) = e^{-iy\eta}q(x,\xi+\theta\eta,x+y,\xi) \cdot \chi(\varepsilon y,\varepsilon\eta)$$

$$I_{\epsilon}(x,\xi) = \int \int r_{\theta,\epsilon}(x,\xi,y,\eta) \, dy d\eta_{\bullet}$$

Having observed that ξ , $|\theta| \le 1$, $|\varepsilon| < 1$, $\varepsilon \ne 0$ are fixed, we get

$$|r_{\theta,\epsilon}| \leq C |\chi(\varepsilon y, \varepsilon \eta)| \langle \eta \rangle^{2^{m_{\bullet}(m_{\bullet}+\delta|\beta+\beta'|)}} \in L_1(\mathbb{R}^{2n}_{y,\eta})$$

Otherwise, by making use of the identical relations

$$e^{-iy\eta} = \langle \eta \rangle^{-2l} \langle D_y \rangle^{2l} e^{-iy\eta} = \langle y \rangle^{-2l} \langle D_y \rangle^{2l} e^{-iy\eta},$$

to integrate (3) by parts, we obtain

$$(4) \quad I_{\varepsilon}(x,\xi) = \int \int e^{-iy\eta} \langle y \rangle^{-21} \langle D_{\eta} \rangle^{21} \{ \langle \eta \rangle^{-21} \langle D_{y} \rangle^{21} [q(x,\xi+\theta\eta,x+y,\xi)\chi(\varepsilon y,\varepsilon\eta)] \} dy d\eta_{\bullet}$$

Furthermore, we can verify the integrand in (4) belongs to $L_1(R_{\nu,\eta}^{2n})$, if and only if we take so large an l, then

$$(5) q_{\theta}(x,\xi) = \lim_{t \to 0} I_{\epsilon}(x,\xi) =$$

$$\left\{ \left\{ e^{-i\gamma\eta} \langle y \rangle^{-2l} \langle D_{\varphi} \rangle^{2l} \left\{ \langle \eta \rangle^{-2l} \langle D_{\varphi} \rangle^{2l} \left[q(x,\xi+\theta\eta,x+y,\xi) \right] \right\} dy d\eta, \right\}$$

Theorem 3 $\partial_x \partial_t^n q_\theta(x, \xi) = Os - \int \int e^{-iy\eta} \partial_x \partial_t^n q(x, \xi + \theta \eta, x + y, \xi) dy d\eta$, for $v, \mu \in N_o^m$.

Proof We only point out that we can differentiate (5) under the integral sign, so this theorem clearly holds true.

Theorem 4 There exist constants C>0 and $l\in N_0$ (both being independent of $|\theta| \leq 1$), such that

$$|q_{\theta}(x,\xi)| \leq C |P|_{L}^{(m,m')} [\lambda(\xi)]^{\tau}.$$

Proof By making use of the identity $e^{-iy\pi} = (1 + [\lambda(\xi)]^{2\delta} |y|^2)^{-l_*} (1 + [\lambda(\xi)]^{2\delta} \cdot (-\Delta \eta))^l e^{-iy\pi}$ to integrate $q_a(x, \xi)$ by parts, we obtain

$$q_{\theta}(x,\xi) = \lim_{\epsilon \to 0} \iint e^{-i\pi t} (1 + [\lambda(\xi)]^{2\delta} |y|^2)^{-l_{\epsilon}} (1 + [\lambda(\xi)]^{2\delta} (-\Delta \eta))^{l_{\epsilon}} [q(x,\xi+\theta \eta,x+y,\xi) + (2\xi)^{2\delta}] dy d\eta.$$

Denoting $r_{\theta}(x,\xi,y,\eta) = (1+[\lambda(\xi)]^{2\delta}|y|^2)^{-l_t}(1+[\lambda(\xi)]^{2\delta}(-\Delta\eta))^{l_t}q(x,\xi+\theta\eta,x+y,\xi)$, then $r_{\theta}(x,\xi,y,\eta)$ is absolutely integrable to y for $l_0 > \frac{n}{2}$. Now. we divide the integral region into three parts: $\Omega_1\{\eta: |\eta| \le [\lambda(\xi)]^{\delta}/2N\}$, $\Omega_2 = \{\eta: [\lambda(\xi)]^{\delta}/2N \le |\eta| \le \lambda(\xi)/2N\}$ and $\Omega_3 = \{\eta: |\eta| \ge \lambda(\xi)/2N\}$, writing $I_i(x,\xi) = \int_{\Omega_i} \left[\int e^{-i\eta\eta} r_{\theta}(x,\xi,y,\eta) dy\right] d\eta$, (i=1,2,3), we have

(A) When $\eta \in \Omega_1$, it can be shown that

$$(7) |I_{1}(x,\xi)| \leq \int_{\Omega_{1}} \left[\int (1+[\lambda(\xi)]^{2\delta}|y|^{2})^{-1} \cdot \overline{C}_{1} |P|_{L}^{(m,m')} [\lambda(\xi)]^{1} dy \right] d\eta = C_{1} |P|_{L}^{(m,m')}$$

 $[\lambda(\xi)]^{\dagger}$, here C_1 is a constant, $l_1 = 2l_0 + |\alpha + \alpha' + \beta + \beta'|$.

(B) We take an $l_2 = 2l_0 + l_1$, then

$$(8) |I_{2}(x,\xi)| \leq \overline{C}_{2} |P|_{l_{1}}^{(m,m')} [\lambda(\xi)]^{\tau+(2l_{1}-n)\delta} \cdot \int_{\Omega} |\eta|^{-2l_{1}} d\eta \leq C_{2} |P|_{l_{1}}^{(m,m')} [\lambda(\xi)]^{\tau}.$$

(C) If we take so large an l that

$$\tau' + 2l_0 \delta - 2l(1 - \delta) < -n$$

 $m' + \tau' + 2l_0 \delta - 2l(1 - \delta) + (1 - \delta)n < \tau$

in which $\tau' = m_+ + \delta |\beta + \beta'|$, $l_3 = l_1 + 2l$, then

$$(9) |I_{3}(x,\xi)| \leq \int_{\Omega_{1}} |\eta|^{-2t} \left[\int |e^{-iy\eta}(-\Delta y)|^{t} r_{\theta}(x,\xi,y,\eta)| dy \right] d\eta \leq C_{3} |P|_{L^{\infty}}^{(m,m')} [\lambda(\xi)]^{t}.$$

Clearly, (7), (8) and (9) imply (6),

Theorem 5 $\{q_{\theta}(x,\xi)\}_{|\theta|<1}$ is a bounded subset of the functional space $W_{\lambda}S_{\theta,\delta}$. Moreover, for every $l_0 \in N_0$, there exist constants $C_0 > 0$ and $l'_0 \in N_0$, which are independent of $|\theta| \leq 1$, such that

$$|q_{\theta}(x,\xi)|_{l_{\bullet}}^{(r)} \leq C |P|_{l_{\bullet}'}^{(m,m')}.$$

Proof Because of the linearity of the oscillatory integral, (10) follows from Theorem 3 and Theorem 4.

Theorem 6 Suppose the symbols of the pseudo-differential operators $P_1(x,D_x)$ and $P_2(x,D_x)$ are $P_1(x,\xi) \in W_{\lambda}S_{\rho,\delta}^{m_i}$, $P_2(x,\xi) \in W_{\lambda}S_{\rho,\delta}^{m_i}$ respectively, then the product of these two operators is also a pseudo-differential operator with a symbol $P(x,\xi) \in W_{\lambda}S_{\rho,\lambda}^{m_i+m_i}$ defined by

$$P(x,\xi) = Os - \iint e^{-i\theta^{\eta}} P_1(x,\xi+\eta) \cdot P_2(x+y,\xi) dy d\eta.$$

Proof It is obvious that $P(x,\xi) \in W_{\lambda} S_{\rho,\delta}^{m_1+m_1}$ and that, for any $u(x) \in S$, we have $P(x,D_x)u(x) = \int e^{ix\xi} \left[Os - \int \int e^{-iy\eta} P_1(x,\xi+\eta) \cdot P_2(x+y,\xi) dy d\eta \right] \hat{u}(\xi) d\xi.$

By applying the Lebesgue dominated convergence theorem, we can obtain

$$P(x, D_x)u(x) = \int e^{ix\eta} \left\{ \int e^{-iy\eta} \left[\int e^{iy\xi} P_1(x, \eta) P_2(y, \xi) \hat{u}(\xi) d\xi \right] dy \right\} d\eta$$
$$= P_1(x, D_x) \left[P_2(x, D_x) u(x) \right] \qquad \text{for} \qquad u \in S,$$

Theorem 7 Soppose $P(x,\xi) \in W_{\lambda}S_{\rho,\delta}^{m}$ is a symbol of a pseudo-differential operator $P(x,D_{x})$, we define its conjugate operator P^{*} as $(Pu,v)=(u,P^{*}v)$ for $u,v\in S$, then P^{*} is also a pseudo-differential operator with a symbol $P^{*}(x,\xi)\in W_{\lambda}S_{\rho,\delta}^{m}$ defined dy

$$P^*(x,\xi) = Os - \iint e^{-iy\eta} \frac{P(x+y,\xi+\eta)}{P(x+y,\xi+\eta)} dy d\eta,$$

Proof There is no doubt that $P^*(x,\xi) \in W_{\lambda}S_{\rho,\delta}^m$. Furthermore, for any $u,v \in S$, we have

$$(u, P^*(x, D_x)v) = \int \left\{ \int e^{ix\eta\xi} \left[Os - \int \int e^{-i\eta\eta} P(x+y, \xi+\eta) dy d\eta \right] \hat{v}(\xi) d\xi \right\} u(x) dx$$

$$= \int \left\{ \int e^{iy\eta} P(y, \eta) \hat{u}(\eta) d\eta \right\} \bar{v}(y) dy = (Pu, v).$$

This paper was written under the supervision of my teacher Mr. Wei Guang-zu. Meanwhile I received a great deal of good advice from Professor Qi Min-you of Wuhan University, Associate Professor Cao Ce-wen of Zhengzhou University and Associate Professor Jian Su-wen of Wuhan University. To all of them I hereby express my heartfelt gratitude.

References

- [1] Hormander, L., Pseudo-differential operators, Comm. Pure Appl. Math., 18 (1965).
- [2] Hormander, L., On the existence and regularity of linear pseudo-differential equations, Enseigent Math. 17 (1971).
- [3] Kohn, J. J. and Nirenberg, L., An algebra of pseudo-differential operators, Comm, Pure Appl, Math., 18 (1965).
- [4] Kumano-go, Pseudo-differential operators.