A Note on Self-Mapping of the Interval*

Zhang Xin-min (张新民)

(Shanxi Teacher's University)

In this note we showed by construct a example that for $f \in C^{\circ}(I I)$, the conditions $p(f) \subset \{2^{n} | \forall n \geq 0\}$ and $P(f) = \Omega(f)$ are not equivalent.

Let $f \in C^{\circ}(I I)$, define $\tilde{f}: [0, 1/3] \rightarrow [0, 1/3]$ by $\tilde{f}(x) = 1/3f(3x)$, for any $x \in [0, 1/3]$. We can construct a example as following:

Let $f_1 \in C^{\circ}(I I)$ be identity, define $f_2 \in C^{\circ}(I I)$ by

$$f_2(x) = \begin{cases} f_1(x) + 2/3 & x \in [0, 1/3] \\ -3x + 2 & x \in [1/3, 2/3] \\ x - 2/3 & x \in [2/3, 1]; \end{cases}$$

then define $f_3 \in C^{\circ}(I \ I)$ by

$$f_3(x) = \begin{cases} f_2(x) + 2/3 & x \in [0, 1/3] \\ -\frac{7}{3}x + \frac{14}{9} & x \in [1/3, 2/3] \\ x - 2/3 & x \in [2/3, 1]; \end{cases}$$

for any positive integer $n \ge 3$ inductive define

$$f_{n+1}(x) = \begin{cases} f_n(x) + 2/3 & x \in [0, 1/3] \\ -\frac{7}{3}x + \frac{14}{9} & x \in [1/3, 2/3] \\ x - 2/3 & x \in [2/3, 1]; \end{cases}$$

Theorem $\{f_n\}_{n=1}^{\infty}$ converge uniformly to a mapping $f \in C^{\circ}(I|I)$ and f satisfy $p(f) \subset \{2^n | \forall n \ge 0\}$.

However, it is not difficult to show $0 \notin P(f)$ but $0 \in Q(f)$, so $P(f) \neq Q(f)$.

^{*}Received Jnly 4,1984.