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Abstract

This paper is devoted to introduce the history of numerical study of solitons and
the main results for K. D. V. equation, R. L. W. equation, Klein-Gordon equation, Sine-
Gordon equation and so on.

The technique for conmstructing difference schemes based on conservation and charact--
eristic is discussed. The two main methods for analysis of stability is given too. Then
several finite element methods are discussed. The final part of this paper is for various

spectral methods.

I Introduction

Russell discovered solitary wave in 1834 (See Ruése]l, 1844), Korteweg de Vries (1895)
studied such problem again. After them people did not fix the attention on it for a long
time, Since Zabusky and Kruskal (1965) solved XK.D. V. equation numericaly and discovered
some properties of solitons, many scientists have worked in this field. There are a lot of
literatures for solitons. such as Jeffrey & Kakutani (1972), Scott, Chu & Mclaughlin
(1973), Whitham (1974), Lax (1978), Miura (1976), Strauss (1978), Makhankov (1978),
Lamb (1980) and Bullough & Caudrey (1980),0n the other hand,numerical study has developed
rapidly, which could be devided into three parts. (A) Finite difference methods. The first
scheme for K. D. V. equation is the second order accurate leap-frog scheme by Zabusky &
Kruskal (1965), Dissipative schemes were considered by Vliegenthar: (1971) and Hopscotch
technique by Greig & Morris (1976). Kuo Pen-yu (1976) proposed several schemes based
on conservation. Peregrine (1966), Eilbeck & McGuire (1977) and Wu Hua-mo & Kuo Pen-
yu (1983) solved R. L. W, equation. For nonlinear Klein-Gordon eguation, there are con-
servative schemes by Strauss & Vazquéz (1978) and others. Perring & Skyrme (1962)gave
the first scheme to solve Sine-Gordon equation and the others followed.

(B) Finite element methods. Wahlbin (1974) employed dissipative finite e¢lement scheme
for K. D. V- equation, implemented by Alexander & Morris (1979). Winther (1981)proposed
another scheme. Sanz-Serna & Christie (1981) considered Petrov-Galerkin method. More:
recently Mitchell & Schoombie(1981) used finite element scheme with shift function. For

nonlinear Klein-Gordon-equation, Kuo Pen-yu (1982) developed Galerkin method.
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(C) Spectral methods. Gazdag (1973), Tappert (1974) and Canosa & Gazdag (1977) employed
finite Fourier method for K.D. V. equation. Shamel & Elsdsser (1976), Watanabe, Ohishi
& Tanaca (1977), Fornberg & Whitham (1978), Abe & Inoue (1980) and Kuo Pen-yu(1980)

gave other schemes.

H Finite Difference Methods

We consider K. D. V. equation

( U ou _ 3°U _ xc R, t>0,
O A T P (1)
U(x,0) =Ugy(x), xcR.

For simplicity we assume U(x+1,t) =U(x,t), in this paper.
Let 1=[0,1], Nh=1, N is positive integer. J,=set{x|x=jh, 1<j<<N},
Let U*(x,t) be approximate solution of U(x, t), Ul(x,t), U*(x,t) and U*(x,

t) are respectively forward, backward and central difference quotient with respect to
Z.Z=X Or t,

The first problem for constructing finite difference schemes is to approximate
nonlinear terms suitably in order to simulate the properties of solution of (1) and
avoid nonlinear instability of computation. Scott, Chu & Mclughlin (1973) showed
the relation between the stability of motion and conservations. Lax (1976)pointed
out that the solution of (1) has infinite conservations, such as

1 1
J‘ U(x,t)dx=J U(x,0)dx, (2)
[ [}

1 1
J‘ Uz(x,!_t)dX=J‘ U%(x,0)dx, (3)
0 0

etc.
Similarly a reasonable finite difference scheme usually possesses discrete conservation
(see courant, Friedrichs & Lewy (1928), Kuo Pen-yu (1965), Richtmyer & Morton
(1967) and Morton (1977)), Since it is very difficult to construct a scheme whose
solution keeps all conservations, so it is better to choose some of them.
If we want to simulate (2), then we have the following scheme

- b
‘i "“”%[i (x,8) +FA(x,0) +U'_. (x,0) = 0, XEL;,t>0, (4)
LU (%, 0) =U(x), xel,,
where F*(x,1) = -[U* (%, J2,
Clearly
h S UHx,t) =h S U (x), (5)

x€]a x€la
for practical computation, we must make the scheme (4) fully discrete. Let T be

mesh size of variable ¢, t,=kr, k is non-negative integer, then we get
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U (6,8 +0Fs (%14, + (1-0) F1(X, 1) +0U Lo, (%, ) + (1-0)U. . (1) =0,
’ | x€l,, k=0, (6)
where 0<<o<<1, If =0, then (6) is explicit scheme. If g=0, then (6) is implicit.
For both stability and saving work, Greig & Morris (1975) employed hopscotch

technique, i. e.
{0, if j+k is odd,
ag=

1, if j+k is even.
Viiegenthart (1977) proposed the following dissipative scheme
h2
U:' (x, t,) +F; (X, 1) +U:;; (x, ty) _"‘é“r_‘ U:;(xytk) =0, xEI;.’k>09 (7)

Vliegenthart considered two-order accurate dissipative scheme too. If we prefer to
simulate both (2) and (3), we can use the following scheme

ﬁ’ 6U" h A i A

;—‘*—‘(x)t)+-, (U"yU)(x’t)'*‘Ux—; (X,t)—_—(), XEI",t>O,

r Jt x (8)
(UM (x,0) =UL (%), xely,

‘where
TV W = WYL+ LY
Then as pointed out by Zabusky & Kruskal (1965), the solution of (8) satisfies
both (5) and
ot 2= jul?,
‘where
ot |2=h 21 [U*(x,t)]2,
x€la
For practical computation, we use the following scheme
{U" (x9th) + JE(U* +07U:'9Uh) (X, 1) + (Ut +UTU:')1;§ (X, 1) =0, XEI, k>0,
U"(x,O):Uﬁ(x), xcly,
then we obtain

(9)

Nott,, 2= o a2+t - 20) \U! e |12,

Clearly azl implies ||U*(ty) |<<|lU*||, which means that the nonlinear instability

is avoided. Particularly, if o=, then U’ () = U],

It should be noted that the energy conservation avoids only the instability in
L.-norm usually, since the L”-norm may be unbounded as h-—»(, (see Griffiths,
Mitchell & Morris (1982)).

For improvement of accuracy, we usually adopt multiple-level schemes, such as

U; (%, 1) + IRt uh) (x5 1,) +U:;; (%,1,) =0, xe.fpk>1,
LU? %, 0) + I WU (%,0) UL, %00 =0,  x€1, (10

7 (x,0) =UL (0, XE Ly
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Indeed, (10) identifies the scheme by Zabusky and Kruskal (1965), Another important.
technique to obtain stable and high order accurate scheme is to use prediction-correction
scheme by Kuo Pen-yu and Wu Hua-mo (1981), such as

O (%s1,) = U* (X, 1) = BT (U, U (% 1) = BTU 2 (%5 ) 5 XELpk=0,

Ul (x,t) + 1N+ 0tUE, ") (%, 1) + U +0TUS) 33 (%, 1) =0, x€Ik=0, (D
Utx,0) =Uk 0, xel.
The technique used in (8) can be applied to other equations with soliton and soliton-
like solutions. For instance we consider the following equation

auU_ p OU _ 6U 8
at tay'—— ax axz B xzul

where p, q, r afe non-negative integers, a, 8, ¥ and m are constants. If r=p=qg=0,

+my|U|*=0, a2

y and B are real numbers, @ and m are image numbers, then (12) becomes Hirota
equation. (See Hirota, Suzuki (1973)), If g=2,a=8=0,y and m ate image numbers,
then (12) turns to nonlinear Schridinger equation. If y=m=0, ¢ and B8 are real
numbers, then (12) is generalized K. D. V. equation. If 2,8 and m are real numbers,
y>0, then (12) is generalized K. D, V-Burgers equation,

One of schemes for solving (12) is the following

L}
-a—q-(x,t) +af U UY 1) = YU (3,1 + BUE, 55z (%o 1) + MmUY U7 (%, 8) = 0, (13)
at xx [y

r r

where

13 k
Mot wh = pﬂ = (WHPV L+ (WhVh) .,
Another equation is R. L. W, equation
(U 12} oU ., 3%UuU
{) at +a % +U ax B axtat =0, x¢l, t>0,
U0 =U . xcl,
whete a=0,8>0,

The eariest scheme is proposed by Peregrine (1966)

p+1

(14)

U (X, 1)+ @+ UM (5 1)) U (5, 1) +UL (%, 4,1)) = BULs, (%,1) = 0.

Eilbeck & McGuire (1977) constructed another scheme later.

The second problem is the stability conditions of difference schemes and the
error estimations. There are two main ways. The first one is Fourier method (See
Richtmyer & Morton (1967)), Let {j*(x,t) and ! (x) be the error of y"(x,t) and
Ut (x) respectively, F(x,?) be the error of right term in difference scheme. Then
from (6), we get the error equation approximately

~

Ul t) +oU (u,tm)u (%, tyo) + (1= 0)U" (x, tk)U (x, 1)

FOT L Gt + L= Tl o (6t =F 0,1,
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We take U'(x,t,) and U*(x,t,.,) as constants, then the above equation is linear.
If it is stable for all x,t and U (x,t) considered, then we say that the scheme (6)
is approximately stable. By using Fourier analysis, we get the stability conditions
in table 1, where M=n:a‘xlu(x,t) [

scheme |Greig & Morris| Vliegenthart | Zabysky & Kruskal

stability - B3 _
S (R S I O
conditions j2-h*M| 4+hIM

Table 1

Kuo Pen-yu (1965) proposed a technique for strict error estimation of nonlinear

differenece scheme. This technique has been used for scheme (8), Let
pa =gt | 17 @ e,

Kuo Pen-yu & Sanz-Serna (1981) proved the following result.

Theorem 1| There exist positive constants N, and N, such that for all t>0,

WO @ |P<N,eM'6 (1),

where N, and N, depend only on yU’(x,t),

Let ¥"(x,t) be the truncation error of scheme (8), then there exist positive
constants M, and M, such that

lu@ -Uut@ I2<Me' g @),

where M, and M, depend only on U (x,1),

H
R =uo-vtie+ [ 17 @ e,
o
Therefore the scheme (8) is convergent provided
R @) —0, as k—0,
The similar theoretical results have been obtained for schemes(11), (13) and the
difference scheme for solving R.L. W, equation given by Wu Hua-mo & Kuo Pen-

yu (1983),
The second equation is nonlinear Klein-Gordon equation

U _ U

9= -2 —y+Ui=0, xel, t>0,

+2 2

ott  ox (15)

%(x,o>=ul<x>, U@, 0 =Uy(x) %€,
Let

~['ff U 2 _ouU 2 _ 2 L 4}

E(t)~L{ W“"”) + (ax <x,r>) Ut + (U, 1) |4)ax,
then
E() =E®). (16)
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In order to simulate (16), Strauss & Vazquez (1973) defined the difference operator
Al

AU (%, ) = L@ 00T+ UF G 1) U (5 ) + U 10 D,
and proposed the following scheme

U:.T(xv tk) "Uz;(X, t;,) —%‘(Uh(xy t};ﬂ) '*'L]/l (X. tk-[))'f'AhUh (x, th) = O;xEIM k219

(17)
LU (x,0) =U ), U*(x,0) =Us (%), xely,
Let
() = = LUr ) (12 Ut 0 2+ Hu e i + o a1
+ *2"IUh<tk) |1 +~5~IU’=(tM> 11+ llut UU!F*—Z—IU? ()| 2
where
utoiit=h L: U x,t) 14, (U 3=h E Uk(x,t) 3%
xCIa xé[a
then
E" () =E"(0),
Another important equation with soliton is Sine-Gordon equation
U _ U _ _
ot? ax* - sin U, (18)
Perring & Skyrme (1962) gave the first scheme based on characteristic.
!/Uh (X Tpyy) =Uh(x,t) + TOM (X, tk*%) ’
| . (19
LUh(x’ t/”%) = Uh (x, tk—-%) +7( U:;—(x, tk) “sank(x’ t)) ’
where
1
th§=(k+7)t,
Now let
2
E (B :J [ aU("")) (u——(x, t)) - 2c08 U (x, t):,dx,
[
then

E,(t) =E,(0).

We can generalize the technique of Strauss and Vazquez to give the following

scheme

(- " €oS U (x,t,,,) —€os Uh(x,t, ) x

_ = cl,, k=1

PUGG ) U000 =TT 6 ) U (K G VTTT O o

U0 =U %), U'(%,0 =08 (x), xX€1,,
then

E} (ty =EY (D),

where
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EY () =5 UG |1+ (UM ) 13+ U2 @ |2

Aty |E - hE [eosU*(x,t,,) +cosU*(x,t,) ],

x&fa

The strict error estimation was obtained.
Ablowitz, Kruskal & Ladik (1979) considered a more general equation

2
U _ U gy =o,

dtz  gx?
~e They put w(x) = U (x,0) and 7="h, then used the following scheme

at

Vi(x,0) =—1~<U0<x> LU (X4 1)) +%<w<x> FW (X +R))

’

] h
. F,(U (x>+U (x+h) xcl,

UMx,t,,) = U (X, t) +Vi(x, 1) + Vi (x-h,t,)

h h —
h F'( Vit +2V *-m1W ) ey, k=0,

Vix,t,,) = —Vi(X,t) + U X+ R, t,,) +U" (X, 2, )

2 A b
_%_F,(U (x+h,t,.+2,) UK ) ) x€1,, k=0,

v Many numerical experiments showed that the finite difference schemes for wave
equations have the following advantages:

(i) Calculation is simple, especially for explicit scheme.

(ii) We can construct various schemes based on the properties of original partial
differential equation such as conservations and characteristic. The solutions of such
schemes usually possess the corresponding discrete properties.

(iii) The numerical results are quite accurate usually.

(To be contirued.)
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