On the Generalized Upwind Scheme

for the Neutron Transport Equation*

Huang Mingyou (黄明游)

(Jilin University)

Let Ω be a convex domain in the (x, y) plane with boundary Γ . Denote by $n = (n_x, n_y)$ the outward unit normal to Γ . Consider the following problem

(1)
$$\mu \frac{\partial u}{\partial x} + v \frac{\partial u}{\partial y} + \sigma u = f \quad \text{in } \Omega$$

(2)
$$u = g \text{ on } \Gamma_{-} = \{ (x, y) \in \Gamma; \ \mu n_{x} + \nu n_{y} < 0 \},$$

where μ , ν are real parameters and $\sigma = \sigma(x, y)$ satisfies $\sigma \gg \sigma_0 > 0$. Equation (1) arises in neutron transport theory. In this paper, we study theoretically the stability and convergence properties of a discontinuous Galerkin approximation to problem (1), (2), which is interprated as a generalized upwind scheme with arbitrary meshes for the first order hyperbolic equation. By means of the energe method, an error estimate in L_2 norm is proved which is a half order higher in mesh size h than that given in [1].

Let $\{\mathcal{F}_h, 0 < h < 1\}$ be a family of triangulations. $\{\mathcal{F}_h\}$ consists of triangular elements denoted by K. We assume that $\{\mathcal{F}_h\}$ is quasiuniform in the sense that there exists a constant $\alpha > 1$ such that

$$h(K) \leq \alpha \rho(K)$$
 for all $K \in \mathcal{J}_h$

where h(K) = diameter of K, $h = \max_{K \in \mathcal{F}_h} \{h(K)\}$, $\rho(K) = \sup\{\text{diameter of all the circles contained in } K\}$. Let $K \in \mathcal{F}_h$, ∂K be the boundary of K. We define

$$\partial K_{-} = \{ (x, y) \in \partial K; \beta \cdot n(x, y) < 0 \}, \partial K_{+} = \partial K \setminus \partial K_{-},$$

where $\beta = (\mu, \nu)$, $n = (n_x, n_y)$ is the outward unit normal to ∂K . And the following notations are employed

$$(w, v)_K = \int_K w \cdot v dx dy, \quad \langle w, v \rangle_{\delta K} = \int_{\delta K} w \cdot v n \beta ds$$

$$||v||_K^2 = \int_K v^2 dx dy, \quad |v||_{\delta K}^2 = \int_{\delta K} v^2 |n\beta| ds.$$

^{*}Received Dec. 18, 1982.

We use the finite dimensional space

$$S_h = \{ v \in L_2(\Omega) ; v | K \in \mathcal{F}_r(K), \forall K \in \mathcal{F}_h \}$$

where $P_r(K)$ is the set of polynomials of degree $\leq r$ on K, then the discontinuous Galerkin approximation to problem (1), (2) is defined as follow: Find $u_h \in S_h$ such that

(3)
$$\begin{cases} \sum_{K \in \mathcal{F}_h} \{ -(u_h, v_\beta)_K + \langle \widetilde{u}_h, v \rangle_{\partial K} \} + (\sigma u_h, v) = (f, v), \forall v \in S_h \\ \widetilde{u}_h = g \quad \text{on } \Gamma_- \end{cases}$$

where (\cdot, \cdot) denotes the inner product in $L_2(\Omega)$, $v_{\beta} = \mu \frac{\partial v}{\partial x} + v \frac{\partial v}{\partial y}$, and \widetilde{u}_h is the upwind value of u_i on ∂K defind by

$$\widetilde{u}_{k} = \begin{cases} u_{k}^{+} & \text{the interior trace of } u_{k} & \text{on } \partial K_{+}, \\ u_{k}^{-} & \text{the exterior trace of } u_{k} & \text{on } \partial K_{-}. \end{cases}$$

In the simplist case r = 0, i. e. S_h consists of piecewise constants, the method (3) is similar to the ordinary upwind difference scheme. Therefore we call method (3) in general $(r \ge 0)$ as the generalized upwind scheme. This method defines a series of explicit schemes.

Introduce bilinear form

$$B(w, v) = \sum_{K \in \mathcal{T}_{h}} \left\{ -(w, v_{\hat{\theta}})_{K} + \langle \hat{w}, v \rangle_{\partial K} \right\} + (\sigma w, v),$$

then (3) can be written as

$$B(u_{i}, v) = (f, v), \forall v \in S_{h}$$

Let v be a piecewise function on \mathcal{J}_h with convention $v^- = 0$ on Γ_+ . A usefull identity, namely

(5)
$$B(v, v) = \frac{1}{2} \sum_{s} \int_{s} [v]^{2} |n\beta| ds + (\sigma v, v) - \frac{1}{2} \int_{r_{2}} (v^{-})^{2} |n\beta| ds$$

can be verified, where the summation \sum_{s} is taken over all sides of the triangulation \mathcal{F}_{h} and $\lfloor v \rfloor = v^{+} - v^{-}$.

It is easy to prove by applying (5) the following stability result.

Theorem 1 The discrete problem (3) has a unique solution u_h for any given $f \in L_2(\Omega)$ and $g \in L_2(\Gamma_-)$, and u_h satisfies

$$\sum_{s} \int_{s} [u_{h}]^{2} |n \cdot \beta| ds + ||u_{h}||^{2} \leq C (||f||^{2} + |g|_{F_{\bullet}}^{2}),$$

where constant C does not depend on h.

From Theorem 1 we know that the solutions $\{u_h\}$ of (3) is uniformly bounded with respect to h in L_2 . So there exists a subsequence $\{u_h\}$ which is weakly convergent to a function u^* in L_2 . The following theorem tells us that this limit function u^* is a weak solution of (1), (2) defined by:

$$-(u, v_{\beta}) + (\sigma u, v) = (f, v) - \int_{\Gamma} g \cdot v n\beta ds$$

for any $v \in H^1(\Omega)$ such that $v|_{\Gamma_*} = 0$.

Theorem 2 Assume that $\{u_h\}$ is weakly convergent to u^* in $L_2(\Omega)$ when h. $\rightarrow 0$. Then u^* must be a weak solution of (1), (2). Consequently, the problem (1), (2) does exist a weak solution.

Now turn to the erroe estimate of u_h . To do this, we introduce a mesh dependent norm

$$|||v||| = \left\{ ||v||^2 + \sum_{K \in \mathcal{F}_h} h ||v_\beta||_K^2 + \sum_s \int_s [v]^2 |n\beta| \, \mathrm{d}s \right\}^{\frac{1}{2}},$$

and the following improved stability estimate is needed.

Lemma Assume that v is any a piecewise continuous function on \mathcal{F}_h with values $v^-|_{r} = 0$. Then there exist constants κ_0 and C independent of h and v such that for $0 < \kappa < \kappa_0$ and h small enough

$$\kappa \parallel v \parallel^2 \leq C\{B(v, v + \kappa h v_{\beta}) + \kappa^2 h^2 \sum_{K \in \mathcal{F}_n} \int_{\partial K} |v_{\beta}|^2 |n\beta| ds\}.$$

In terms of this lemma we are able to prove the following error estimate.

Theorem 3 Assume that u and u_h are the solutions of (1), (2) and (3) respectively, and that $u \in H^{r+1}(\Omega)$, $r \ge 0$. Then for small h

$$|||u-u_h||| \leq Ch^{r+\frac{1}{2}}||u||_{H^{r+1}(\Omega)}$$

The proofs of all results mentioned in this short paper are given in a author's research report [2]. And an application of the upwind type finite element scheme to some nonlinear transport equation has studied in [3].

References

- [1] Lesaint, P., and Raviart, P. -A., On a finite element method for solving the neutron transport equation, Mathematical Aspects of the F. E. M. in Patial Differential Equations, Ed. by C. de Boor, Acad. Press, New York, 1974.
- [2] Huang, M. Y., On the generalized upwind scheme for the neu; ron transport equation, Research Report, Jilin University, No. 8204, 1982.
- [3] Huang, M. Y., A finite element approximation of upwind type to the vorticity transport equations in bounded domain, Research Report, Jilin University, No. 8303, 1983.