A Topological Degree for Multivalued

Generalized A-proper Mappings*

Min Le Quan(闰乐泉)

(Beijing University of Iron and Steel Technology)

The aim of this note gives a generalization of the degree theory for single valued G-A-proper mappings of [4] and a degree theory for multivalued G-A-proper mappings. Let (X,Y) be a pair of separable Banach spaces with given approximation scheme $\{X_n,Y_n,Q_n\}$ ([2] Section2). Let D be an open bounded subset of X.

Definition 1 A convex valued mapping $T: \overline{D} \rightarrow 2^Y$ is said to be Generalized A-proper (i. e. G-A-proper) with respect to $\{X_n, Y_n, Q_n\}$ if

- (i) $T_n: \overline{D}_n \rightarrow 2^{Y_n}$ is an u. s. c. mapping with compact values for all $n \in \mathbb{N}$, where $D_n = D \cap X_n$ and $T_n = Q_n T |_{X_n}$
 - (ii) For any sequence $\{x_{n_i}|x_{n_i}\in X_{n_i}\}$, $n_i\to\infty$, T satisfies
- a) If $x_n \in \partial D_n = \partial D \cap X_n$, and $z_n \in T_n$, (x_n) such that $||z_n Q_n y|| \to 0$ for some $y \in Y$. Then exists a $x \in \partial D$ such that $y \in Tx$;
- b) If $x_{n_j} \in D_{n_j} = D \cap X_n$, and $z_{n_j} \in T_{n_j}(x_{n_j})$ such that $||z_{n_j} Q_{n_j}y|| \to 0$ for some $y \in Y$. Then exists a $x \in \overline{D}$ such that $y \in Tx$.

Definition 2 $T: \overline{D} \rightarrow 2^Y$ is said to be "p point" G-A-proper with respect to $\{X_n, Y_n, Q_n\}$ if T satisfies Definition 1 (i) and (ii) at piont p.

Definition 3 Let $T: \overline{D} \to 2^{\gamma}$ be G-A-proper and p be a point such that $p \notin T(\partial D)$. We define $\deg(T, D, p)$ the degree of T on D over p with respect to a given scheme, as follows. Let \widehat{Z} be the set of all integers together with $\{+\infty\}$ and $\{-\infty\}$. Then $\deg(T, D, p) = \{\gamma \in \widehat{Z} \mid \text{ there exists an infinit sequence } \{n_i\} \text{ of positive integers with } n_i \to \infty \text{ such that } \deg(T_{n_i}, D_{n_j}, Q_{n_j}, p) \to \gamma \}$, where $\deg(T_{n_i}, D_{n_j}, Q_{n_j}, p)$ is the degree defined by Cellina and Lasota[17].

Theorem 1 Let D be an open bounded subset of X and let T: $\overline{D} \rightarrow 2^Y$ be G-A-proper with respect to a given approximation scheme, with $||Q_n|| \leq M$ for all n. Let $p \notin T(\partial D)$. Then the following results hold.

^{*}Received Mar. 15. 1983.

- (i) If $deg(T, D, p) \neq \{0\}$, then there exists an element $x \in D$ such that $p \in T(x)$.
- (ii) Let $H: \overline{D} \times [0, 1] \rightarrow 2^{V}$ be a mapping such that $H_t = H(\cdot, t)$ is a family of G-A-proper mappings if
 - (a) $T_n: \overline{D}_n \times [0,1] \rightarrow 2^{n}$ is an u·s·c. mapping.
- (b) If exist $\{n_j\}$, $\{x_{n_j}\}$ and $\{t_j\}\subset [0,1]$ with $n_j\to\infty$ as $j\to\infty$, $t_j\to t_0\in [0,1]$, $x_{n_j}\in\partial D_{n_j}$ and $Q_{n_j}p\in Q_{n_j}H_{t_j}(x_j)$, then we get $x\in\partial D$ such that $p\in H(x,t_0)$.
 - (c) $\mathbf{p} \notin H(\partial D \times [0, 1])$.

Then $deg(H_t, D, p)$ is independent of t in [0, 1].

(iii) Let $D = D_1 \cup D_2$, $D_1 \cap D_2 = \emptyset$. Put $D' = \partial D_1 \cup \partial D_2$ and suppose that $p \notin T(D')$. Then

$$\deg(T, D, p) \subseteq \deg(T, D_1, p) + \deg(T, D_2, p),$$

with equality holding if either $deg(T, D_1, p)$ or $deg(T, D_2, p)$ is a singleton.

- (iv) If D is symmetric about the origin in X and T is a mapping, odd on ∂D , then $\deg(T, D, 0)$ is odd so that the equation $0 \in T(x)$ has a solution in D.
- (v) Let T, S: $\overline{D} \rightarrow 2^Y$ be G-A-proper mappings, such that T(x) = S(x) for all $x \in \partial D$. Let $p \in Y$ be a point such that $p \notin T(\partial D) = S(\partial D)$. Then $\deg(T, D, p) = \deg(S, D, p)$.

Definition 4 A mapping $T:X\to 2^{X^*}$ is said to satisfy condition (*) at point $p\in X^*$ if for any sequence $\{x_{n_j}\}$, $x_{n_j}\in \overline{D}_{n_j}\subset X_{n_j}$ and $z'_{n_j}\in T_{n_j}(x_{n_j})$ such that $\|z'_{n_j}-Q_{n_j}P\|\to 0$, $n_j\to\infty$, then $\{\|z_{n_j}\|\}$, $z'_{n_j}=Q_{n_j}z_{n_j}$ are uniformly bounded with respect to n_j .

Theorem 2 Let $T: X \rightarrow 2^{X^*}$ be mapping of type (M) ([3]) and (X, X^*) be a pair of reflexive separable Banach spaces that has given approximation scheme $\{X_n, Y_n, Q_n\}$. Let D be an open bounded subset of X and \overline{D} be weakly closed. If $p \in X^* \setminus T(\partial D)$ and T satisfies the condition (*) at point p, then T is either G-A-proper mappings at point p or the equation Tx = p must have a solution in D.

Theorem 3 Let a mapping $T: X \rightarrow 2^{X^*}$ be of type (M) and (X, X^*) be a pair of reflexive separable Banach spaces that has given approximation scheme $\{X_n, Y_n, Q_n\}$. If $\vec{B}(0,R) \subset X$, $0 \in X^* \setminus T(\partial B(0,R))$ and T is odd on ∂D . In addition, T satisfies condition (*) at point o. Then the equation Tx = o has a solution in B(o,R).

Reference

- [1] Cellina. A. and Lasota, A., Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur., (8) 47 (1969), pp 434-440.
- [2] Massabó, I. and Nistri, P., (Cosenza), Bollettino U. M. I., (5) 13-B(1976), pp 672-685.
- [3] Pascali, D. and Sburlan, S., Nonlinear mappings of Monotone type, Ed. Academiei Romania, Sijthoff & Noordhoff Intern. Publ., (1978).
- [4] Min Le Quan. A Topological Degree for Generalized A-proper Mappings, J. Math. Research and Exposition, vol. 5, No. 2(1985).pp.59-64.