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Note on the Algebraic Precision of

IReducing-Dimensionality Expansion*
Mao Wenqun(£ 22y Yang Jiaxin(p € #)

(Dalian Institute of Technology)

As is known in [1], a general reducing-dimensionality expansion is
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In formula (1) we can choose an auxilliary polynomial P(x) from the class of
polyncmials K, ={P,(x)|P,(x) £P, and the coefficient of the term xx...x7"is 1,
m, +m,+--+m,=m}, in which P denotes the space of all polynomials of degree<m,
Theorem For any bounded region in R” and any given positive integer m, there
exists a class of auxilliary polynomials P(x) €K, in (1) such that the reducing-
dimensionality expansion (1) is of the highest algebraic precision 2m-1,

Proo! Let M(n,m)= ("™, Let {¢,;}{.>™ be all monomials of degree<cm in P,

Without loss of generality, we can assume ¢, ., =x° |a/ =m, P,=span {¢,, .-

’
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Dirmm-1}. Let P(x)=x"+ 3] a®$; €K,,, By means of p_ | P, we can determine

T
all coefficients a*’, hence P,{(x) is determined.

1f the auxilliary polynomial P(x) is P,(x) mentioned above, then we can ver-
ify that the formula (1) is of the highest algebraic precision 2m-1, Hence the
proof of theorem is completed.
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