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Abstract

In the viewpoint of spectral docomposition we study the spherical malrix
distributions and obtain some new subclasses of Left-spherical distributions class,
We also investigate rudely their properties and get some interesting examples,

1. Introduction

This paper can be regarded as a continuation of our latest paper, Fang and
Chen (1983), Hence, in the paper most notations remain the same as these of
Fang and Chen (1983), but a few notations are altered to consist with other
authors, O(m) denotes the set of mxm orthogonal matrices and Vaup= {T'(nxp):
I'"I'=1I,} is the Stiefel manifold, If x and y have the same distribution, we
write x%y, We call x(nx1) having spherical distribution if x% 'x for ecach
' €O0(n), denoted by x~Sa(d), where ¢ is x's c, {, (characteristic function),
There are many different extensions of spherical distribution in the case of
matrix, The following are several main classes involved in the paper,
F.={X(nxp): T XZ%X, for each I €O(m},
¥ ={X (nxp) : TXQLX, for each T €O0(m), Q€O0(p)},

F.={X(nxp) : X= (x,,>xp) 5L %, [px,), fore ach [,€0(m),j=1,-, p},
F.={X(nxp): T'(VecX)EVecX, for each I'€O0(np)}, :

In the paper of Fang and Chen (1983), F, appeared as F,, VecX=(x}, -, x))’
if X=(x,, %) If for each [ €0(m), I'Y4Y, we cell also Y left-spherical,
If Y’ is left-spherical, Y is called right-spherical, We call Y spherical if it is
both left-and right--spherical, So F, is the set of nxp left-spherical random
matrices, And Fg is the set of nx p spherical random matrices, We write x~F
to denote that x has distribution function F, Notation Yax, (appeared in Dawid
(1977) as Y,,,) denotes the unique uniform distribution on V,,, especially,
when p=1, &™~Y,, is the uniform distribution on the unit sphere in R*, its
¢, f, (characteristic function) Qu (+), Throughout this paper let U~Y,.p that
U c ¥ poihted out by Dawid (1977), and A>0 denotes that A is an nonnegative

definite matrix,
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We (1983) have obtained somc relationships among ¥,, ¥F,, F; and Fg,
but, speaking roughlv, we dealt with them through coordinate decomposition, In
this paper, we try to study them in the viewpoint‘o,f. spectral decomposition so
that more subclasses can easily be structured, May be these subclasses can help us
to recongnise further the spherical matrix distributions system, In evidence, some
interesting examples will be gotten by the subclasses, For example, we have
known (Kelker (1970)) that if x(px1)~Sp(d), then x~N(0, a2l,), provided
x’s some component (say x;)~N(O, a?), Thus we can put a question, Does it
hold yet in the case of matrix? That is, when X€Fs (or € F,), (n=p>1), if
X's’some row and column marginal distribution are normal, we are asked whether
X is distributed according to matrix normal N(O, [,@Z), Perhaps one may
conjecture the answer in the affirmative, In section 3, we shall discuss the
problem in detail,

In section 2, we shall put the notion on spectral decomposition and give the
spectral decompositions of F¥,, Fs and F,, Some new subclasses are obtained in
section 3, In the last section, we define a new subclass of “F,, and there are
some interesting properties of those subclass, Unfortunately, we have not made it
very clear the structure of the new subclass, Hence, on the occasion of the paper
we put some problems we cann’t solve to interested readers,

I. Spectral Decomposition

Let's begin with a lemma that appeared in Dawid (1977), but, for its proof,
he suggested reader to look up Dempster's book, however the system of his book
is different from orthers, so we give an alternative proof here,

Lemma 1, If X(mxk) is left-spherical (here, m and & are two arbitrary
positive integers), then X's distribution is fully determined by that of X’ X,

Proof, Suppose Y(mxk) is also left-spherical and Y’/Y-£X’X, we want to
show X£Y, Let Y,xa's distribution and its characteristic function be F and
Q(T’T), respectively, we have, X~c, f, ¢y, Y~c, f, ¢y,

4 = / = ’
dx(T'T)= ¢x(T T)Somn dF Solm) dx(UTY WUTHLFWU)
_ itrT'U'X - itrX'UT
= E[So(m e dF(U) ] —E[So.m e dEW) ]

= E[S HTXV4E W) | =ECQTX XT'))
Oim)
= ECQ(TY’YT’))=¢4(T'T), for each T(mx k), proving the lemma,

When p=1, Lemma]reduces essentically to Theorem2 (Cambanis, Huang
and Simons (1981)) .

If X€F,, then X2UA, where U is defined in the section] and is ind,
(independent) of A4 (=0) (c, {, Dawid (1977)), Since A=0, A=VAV’, where
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VV=I, A=diag (A, 2p), M2 =hp=0, We have, with V=(r,, ., rp),
P

XLUVAY = 2)\,(Ur,-r,-')EX, ot X, (1)
-1
say, and
X4yav/ (2)
where U is ind of {A, V} because in both of (1) and (2), X is left-spherical
and X’ XLV/ AW (cf, Lemma1), We call equation (1) or (2) to be the spectral
decomposition of X,

Property 1, X/X;=0, X, X} =0, i=],

Property 2, X!X,/tr(X}X,) is the orthogonally projective matrix on lincar
subspace L(r;), provided A; <0, 1-<i<(p, where L(B) denotes the linear subspacc
produced by B,

Property 3, P,=X.X!/tr(X!X,) is the orthogonally projective matrix on lincar
subspace L(X;), propided 2,>0, 1<i<p, And P=P, +...+P, is the orthogona lly
projective matrix on L(X), further, on L(U) if P(X’X>0)=1,

Above properties’ s proofs are trival and omitted,

We should point out a fact that in general the spectral ‘decomposition of X
isn’t unique and the next paragraph can be used as an illustration,

We consider a set QU ={(F,,--, Fp) : F;=Ur;x]!, V=(r,,--, rp) is ind of U,

P

v'V=I,}. Clearly, for any (F,,-, Fp)€ql, UiF,~}~---+Fp:z Ur;r} is the
=1

spectral decomposition of U, If particular, when V~7p,, we denote the (F,,..,

F,) by ug=(E;,--, Ep) which is an especial element of qf,

Theorem 1, X€ Fs iff XENE, +-- +hpEp, where A= 2hp20 is ind of u,
=(E;,-, Ep).

Proof, 1f X&€ Fs, then X-LUAU’, A=diag(A,,-, 2p), A =2hp=0, Vo~
Ypxps U~Yaxp are all ind (cf, Dawid (1977)). (Note : if V~Yuxp, V’=V*':’£«V).
Hence X4 UAV/ SUVAV’ =\ E, + - +ApEp, where E;=Ur;r!, i=1, -, p, V=
(ry,, tp) is ind, of U, and u,=(E,--, Ep) is ind, of (A,,-, Ap),

Conversely, if (Ay,-, Ap), is ind, of u,=(E,,-, Ep), then XL\ E, + ...
+h,Ep = UVAV/-LUAV’ by the (E,, -, Ep)’s definition, where U, A, V arc
ind,, A=diag (A;, -, Ap) and A~Yp.p, That means XEFg, proving the
theorem,

Before proceeding further it is maybe wbrth pointing out a fact, For cach
X € F 5 there is an unique set of A;=... =X, >0 such that X4\ E, +-+4+ApEp, and
(A ,y Ap) ind, of (E,, -, Ep), Hence we could regard {E,, .-, Ep} as a set
of “base” in Fs (even standard and orthogonal), and (A,,--, Xp) as X's %coo-

rdinate” under the “base” {E,,---, E,}, Basing on the observation, we can sece
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that the spectral decomposition of X in Fg shows the geomelric significance of
X’X's latent roots {A},.--, A3} and describes how they determines fully the
distribution of X,

Theorem 2, XCF, iff XL\, F, 4 .- TApFp, where (F,,--, Fp)Cal and (M F,
FeetApFph,, -, Ap) is left-spherical given (h,,--, Ap), A,;=---=Ap>=0,

Proof, If XcF,, X has the spectral decomposition (1) and let F,=Ur;r},
i=1, -, p, then (F,, -+, Fp)&al, Moreover (M F,+ .« +hpFplh,, -, hp) ==
(UAV |[AYLU(AV[A) is left-spherical since U € F 5 and it is ind, of {A, V}.

Conversely, suppose (F,,.--, Fp)€q, and (A F, +-- +ApFp|A) is left-spheri-
cal, Then, for each T"€0(n), I'(AF 4 +ApFplAy= (I'(A,F, 4 +1,Fp) | A)E
(M F 4+ 4+2pFp| M), Two random matrices’ distributions are conditionally iden-
tical, so are their onmes unconditionally, Thus T'(AF, 4+ A Fp)4A F, + - +
A pFp, for each I'€0(n), proving the theorem,

The next theorem is a sequence of Theorem 1 and Fang & Chen’s(1983) Theo-
rem 7,

Theorem 3, XcF, iff XA E, +-.- +npEp, where u,=(E,,-, Ep) is ind of
M,y Mp) and M} =R? w;/(w, + - +wp), i=1,--, p, K=0 is ind, of (w,, -,
wp) which are p latent roots of Wishart matrix W~Wp (n, Ip).

We are not to give the spectrel decomposition of X in ¥, since it is tedious,
Having had Theorem 1, 2, 3, wec can derive easily the spectral decomposition of
XX,

(i) I XEFgs, then X' XEAIEJE, 4 - + ABEJEp, where A,z 22hp20 is
ind, of u,=(E,,-, Ep), Alternatively, X/ X-LV/AV-LVAV/ with V~Ypup, A=
diag(r}, -, Ap), ind, '

(ii) If X€F,, then X' XL)\3iFJF, + ..« +M3F)F,, where (F,, -, Fpeal
and (A, F, 4 -« +ApFplA,, Ay, -, Ap) is left-spherical, Alternatively, X’/X%
VAV, with A=diag (A},--; 2}) and V' V=1, but now it is unnecessary that V ~
Ypxp and V is ind, of A, In fact we have,

Proposition 1, For orbitrary random matrices V, V/V=I,, and A=diag (A,
oy Ap)y AyZ2--Z=hp>0, there exists a unique nx p matrix X in F,, n>p, such
that X’ X-2V/AV,

Proof, Let X=UA'W, where U~Yny, is ind, of {A, V}, A’ =ding (A}, -,
A%, Then X€F, and X' X=V/AV, If there exists another one (say) Y& F,,
and Y/ Y-%V’AV, then X, X-4Y’Y implies X-&Y since the distribution of Xec7, is
fully determined by that of X’ X (cf, Lemma1), It follows,

(iii) 1f X€F,, then X' XLEnIEJE, +.. +niEJE,, where uy=(E,, -, E,) is
ind, of (n,,--, Tp) that is defined by the Theorem3,

We recall how it was complex deriving the distribution of the normalized

characteristic vectors of W~V , (n, I,), Now it is apparent because W-ELX’X, X
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~N (9, I,,';,Jp)' XC';S and W2V AY by (i), wiere ¥ ~ L axp b» the normaliced
characteristic vectors matrix of W, In fact, writing V::(vy) and J=diag (sgn
Uy, s, SEN Up) where sgn X deuotes the sign function and noting that V~7,.,
and JV is the normalized characteristic vecters of W with the first column of JV
being nonncgative, we immediately get the result that JV is distributed according
to the conditional Haar invariant distiidution which is Theovem 13,3, 3 in Ande-
rson’s book (1958), Further, for any X Fg, the normalized characteristic vee-
tors matrix of X’X must be distributcd according to Ypxp.

il . Some Subclasses

For X F,, it has spectral decomposition (1), that is, Xi)(1 4 Xp,
wheire X F, and rk(X) =rk(A)=ss¢nhy, i=1,--, p, This fact arouscs us to
investigate the following class;

Fo={XcF, rk(X)=1, a, ¢, }

In order lo reserch F, we consider some other scls,

FP=(X (nxp) : X2Uyz’, U is ind, o{y(px 1), 2(px 1)}, },

F={X (nxp) : XLyz', y(Sald), yis ind of zipxD),},

F=(X (nxp) : X%amz, w™ is ind of z(px1),} and

F.O={X (nxp) : X2U1,2, z(px1) ind, of U}, where 1,= (1, 1),

Theorem 4, F ,=F V=F=F "=F ",

Proof, F,="F 1 is obvious by noting that X F, implics X4UA, rk (A)
=1, A0, a, e, and thus X4Uyy', A=yy', wherev y(px1) is ind, of U, Now
we show F ' =%F.", FOF S is clea, If XCF, XLunz 24U, CINTD)
since U1, %/ nue™, where U can be chosen to be ind, of 2z, that is to say X¢

‘5‘”, The rest of the proof leaves to reader,

Lemma 2, For X¢F,, if the distribution of Xa, wherc aC R? is a fixcd
constant vector, depends on a only through a’a, then XC Fg,

Rroof, As rk(X)=1, a, e, we can write X' X%yy, y(px1). Now, Vac R?,
IeO(p), we have Xa2XT'a and thus o’ X' Xala’yy' cfa’T’ X' XT'a-%a’ I'yy’ I'a
by the assumption, Take d~Y,q (i, ¢, a random signal clemet) is ind, of y,
As 52 =58/0=1, a’y5+dy a-%a’ I'/yddy’ 1'a, Notin3 that Sa’y and da’I’’y arc all
left-spherical (symmetric rardom variables), by Lemma1l, we get $.a’y2da’
I’y for each a€R? and '€ O(p). Then z=0dy~sp ($) by noting that Eeia’z=
Eei(U'’a)’z fhr each ac R? and T €O(p), Therefor, by X' X-%yy =z2/, X'X i
sphericl since z~Sp(d), that is to say that X is right-spherical and X is
spherical since X is left-spherical, proving the theorem,

By Lemma2 we obtain the following theorem,

Theorem 5, XcF1F, iff XcF, and the distribution of Xa,where a¢ R,

fixed constant, depends upon a only through a’a, And we have
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F ) Fs—{Xnxp): XLat"z’, w'" is ind, of z2~S,(d), }.
Now let’s go back to the spectral decomonosition " (2) , If we have the A
and V varied, we shall get many subclasses of F,, The first, we let V=I,,
thus

F.={X : X2UA, U is ind, of A=diag(A,,---, Ap), A; =0, i=1,--, p}.

What information does F; give us? Note that XeF, iff X' X=A*,XcF,.
Therefore, the distribution of normalized characteristic vectors matrix of X/ X
is a degenerate distribution,

Example 1, Take A=diag (R,,.-, Rp), where R;220, i=1,--, p, and (R},
.y R3)~the generalized Raylcigh distribution, i, e, (R%,-, R})%*(wy,, -,
wpp), where {w;;, 1<i<{p)} are the diagonal elements of W~W, (n, ). Then
X-—'iUl\Ey5 and X’s column marginal distributions are all normal, but that of
X is not,

Example 2, Takc A=diag (1/)d,, -, 1/dp) into XLUACF,, where d;>0,
i=1,-, p, (d}, - d”’)NDP(é’""é’\' Now X’'s row marginal distribution is
distributed accovding to 1-symmetric multivariate distibution, its c, f, belongs
to ®,(1), studied by Cambanis, Keener and Simons (1981), In fact, if u, is
the first row. of U, u;, 2Ra” where a'? is ind, of R2~B(%’ llm;i),(Cf. Fang
ang Chen (1983)), and x,,, the first row of X, <“R+Aeu'”, then x4y has c,
f. &t ]+ +tp])EDPH(L) since R is ind, of A and AaP~c, {, ¢ (|t,]+
w4+ 1tp]) (cf, Cambanis, keener and Simons (1981), Th, 3,1, ). But the c,
f.s of columns of X have the form ¢*(¢} +---+tp)which is disscibuted according
to 2-symmetric multivariate distribution,

A more general case is to take A=Re.diag(1/d,---,1/dp) where R0 is ind,
of (d,,-+, dp) and (d},--, d}) have the above meaning,

Put A=RI, into F; or (1), we get

F.={X:XLRU, U is ind, of R>0,},

Cleasly ,F,cF and F,cFsby UEFs, In the Introluction,we presented
a question that given a random matcix X€F s with row and column being all
normal, is it necessary that X is normal? The next example replies negatively

to the question,

(i) X&Fs. (ii) Each coulmn of X=(x,,-, xp) is normal N(O, [,). LetU
=(a,, -, #p), Then x,-4 Ru,, where u,=% o' and R,~%} is ind, of u,,
implies x,~N (Q, I,). (iii) Each row of X=(x,,, -, %(n,)’ is normal, The
reason is that x, is left-spherical. (i, e,, x4;,~Sp, ($)) by XcF, and the
components of x,, are normal by (ii) , (cf, Kelker (1970)) . (iv) X is not

normal, Otherwise X has independent components so that X has a pdf,,
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(probability density function), but it is impossible when p>1, (cf, Fang
and Chen (1983)),

Perhaps, Example 3is not convincing because X has no pfd,, Therefore,
we further consider the case of having a pdf,, That means that to find an
XcFs, it has a paf, with row and column being all normal, but X is not
normal,

Set Y-4RU*, where U* =Y(ipxp is ind, of R*~Ryp. By using the above
discussion, the each row and the each column Y has the normal distribution,
and Y is not normal when p>>1, Partition Y into two parts, Y, (nxp) and Y,
(pxp) and Y=(Y}, Y}), Then ¥, is just sought, Actually, it is easy to sec
that Y, € Fs, both row and column marginal distbutions are normal, and Y,
has a pdf, (cf, Fang and Chen (1983)). Y,, however, is not normal, If Y,
is normal, it must be N0, I,&I,), its ¢, {, is $(TT,)=exp (——_;_trT{Tl),
where T,; nxp, Then the ¢, f, of ¥ is also ¢(T’T)=exp(—-%trT’T) with T,
(n+p)xp, but it is inpossible since ¥ is not normal, Thus ¥, couldn’t be
normal,

Before ending this section, we want to say a few words on the spectral
decomposition again, For XcF ., XL UAV, If we take both A and V to be
constant, then such X is the projective transformation of U, If we only fix
the A to be constant, X’X’s latent roots are nonrandom and the mnormalized
characteristic vectors matrix of X’X, however, can be random, but it is not

necessary to be uniform distribufion Yp,p,

. Muitidimensional Versions

The Lemma 2 reminds us of an intereresting notion introduced by Eaton
(1981)——n-dimensional version of one-dimensional symmetric distributions,
The distribution of a random vector x(nxX1)is an n-dimensional {rersion of the
distribution of a symmetric random variable z if, for tER" t'x%c (8)z with
the function c(8)>0 if tx0, Moreover Eaton (1981) has shown the following
result,

Suppose z have an n-dimensional version and Var (2) <oo, Then every
n-dimensional version of z is given by Ax, where x;~S,(d) and A is an nxn
nonsingular constant matrix,

Naturally, we may think what is an nx p-matrix version of a vector x€ S,
(¢). It seems to be reasonable to confine the nx p-matrix versions within F,,
Thus we can make up a definition as following. '

Definition 1, X € F, is called an nx p-matrix version of x~S,($) if -there
exists a function e(+) on R? to (0, o) such that

(1) ¢(a)>0 if a=0,
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(ii) Xafc(a)x, for each aw R?,

Lemma 3, Supposc X~S,(¢d) with finile positive varance a2=F(x’x), Then
if XCF, is an ax p-matri< version of x and F(x,,x;,) =%, where 'V is the
{irst row of X, the function c(a) corresponding to X is certainly c(a)?=n+a’2
aja*, '

Proof, By Eaton (1981)’s technique, we have Xa%c (a) x, for each a ER?
and a’ X’ KaZc(a)ix'x, thus E(C’X’Xa):;a’E(X’X)a:a’(z:_‘)lz‘(xmx{i))a=na’Ea
—c(a)tE(x’x)=a%c(a)?, i, e, c(a)?=na’Zaja?, proving the leAmma,

Our Lemma 2, 3 have actually shown that if rk(X) =1 and E(x,x/y,) =I,,
then X is an nx p-matrix version of some xE€S,(d) H{IXEFs, But if we omit
the assumption rk(X)=1, we don’t know what will happen yet, Therefore wec
define a new set as following,

F,={X€F,: the distribution of Xa edpends on a€R”? only through a’a},

We have not known whether 4F,=F ¢” holds or not, We think that it is
probablely OK, At least, there are many usual properties in F, that Fg has,
1t is clear that F,DF 5, The following are some simple facts on F,,

Theorem 5, XcF, iff X&' F, and the first row x{,~S5,($) of X,

Proof, Suppose X¢ F,, Then XE€F, and XatXTa, for each I"'CO (p)
and each a&R?, Hence a1 x,_fl)*-’é a’x;,, that is to say that E (eia’x(n)=
Erei(ta)!x1) for cach 'EO0 (p) and each aERP, Let x,,’s ¢, {, be ¢(¢t), Then
$t) =4(I't), for each I'€O (p) and eachacR”, i, e,, x,,~5p(d), Conversely,
suppose X,,~Sp($) and XEF, with ¢, f, $(T’'T), Then $(bb') =d(b'b) for
cach bERP since x4)’s ¢, {, is also o(b’b), BERP, Therefor, for any acR?,
but fixed and any tERP, we have E(eit'za) =fi(gitrat’z) = j(t' tvaa’ ) =(t' ta’a),
and it shows that the distribution of Xa dcpends upon & only through a’a,
completing the proof of theorem,

Corollary 1, F,=F N F:.

Proof, clearly, F,cF.NF.. Now suppose X€F N F.. Then x4y~Ip(d)
by Theorem 5, where x) is the first row of X, and XE€F, since X&F, and
x1y~Sp($), (cf, Fang and Chen (1983)’s Theorem 5), The assertion follows,

Proposition 2, Suppose X =(x;;)=(x,, -, Xp)=(X(y), *» Xp))’ €F, and have
finite second moment, Then

(i) Cov (xp %) =000, R, |=1,---, p, and
(i1) Cov (xyy, xpy) =d;eal,, i, j=1,, n,

where 3/ =0 or1 when i3 or i=j,

Proof, We are only to show (ii) because the proof of (i) is similar to that
of (ii), Noting x;~Sn($) i=1,-, p, since X&€F,, we have E(x,%/,) =0, i%j,
and Xa%x,, for aCR”? with a’a=1, Thus E(a’x;)xj.@) =E(x4%x;) =0, for a CR?
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point out that Cov (x,, x;) is a symmetric matrix, it must be zero matrix
0, for ixj, In fact, X-9UA, where U is ind, of A, U={(a,,-, up)= (84,
wy)' But E(aguly)=E(agut), ixj, and thus, given 4, E (A’u\’,,u(,)A):E(A”
u;ulA), it implies E(xy, 25)=E(x;x) since A is ind, of U, that is to say
that Cov(x;,, x;) =Cov(x;, x;,), proving (ii),

In the ahove statement, there is simple fact we haven’t pointed out that
is x, 4.4y, if X=(x,, -, x,) € F,, It is easy to see by Xa% x, for each
aC R? with a’a=1,

Proposition 8, Suppose X € F, and y(px1) is ind,of X with P(y y=0)=0.
Then the distribution of ¥’ X’Xy/y'y is independet of that of y,

Proof, it is enough to show that the distribution of a’X’aXa, a< R? and
o a=1, doesn’t depend on a, But this is obvious by Xc F,,

Proposition 4, The following statements are equivalent,

(i) Xe€F, and x,~N@, 1,), where X=(xy,--, xp),

(i) X€F, and /X' Xa~%X}, for each aER? with a’a=1,

Moreover, (i)or(ii) implies that the row and column marginal distrjbutions
are all normal,

Proof, ¢ (i) implies (ii)”, As X¢&'F,, we have a’X’Xa-ix{xlfv%,,’ by x,~
N, I,), for each a¢ R? with a’a=1, implying (ii),

“(ii) implies (i)” Soppose X&'F, and &' X' Xa~ &%, for each aCR? with
a’a=1, [t is easy to see that Xa~N(QO, [,) because Xa&S,(d) and (Xa)’ (Xa)
~X%, for each a€ R? with a’a=1, and thus we can conclude that X& F, since
Xe~N(O, a’al,) for each e CR?, proving that the proposition is true,

Finally, the following picturclgives a summary about the relationship

amony the classes of spherical matrix distributions,
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Picture 1. Relationship among the classes of spherical matrix distbutions.
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