An Extension of the Turan Inequality in

$$L_p$$
 space for Q

Zhou Song - ping (周颂平)

(Hangzhou University)

I. Introduction

Denote by H_n the set of n-th algebraic polynomials all whose roots lie inside [-1, 1], R_n is the class of algebraic polynomials of degree n which have only real roots, and R_n^* is the class of trigonometric polynomials of degree n having only real zeros. Let C be a positive absolute constant, which may be different in different places.

Theorem T. If $f(x) \in H_n$, then

$$||f'||_{L_{p}(-1, 1)} > C\sqrt{n}||f||_{L_{p}(-1, 1)}$$
 $(1 , (1)$

where $\|\cdot\|_{L_{p}(-1, 1)}$ is the L_{p} -norm on (-1, 1),

In 1939, P. Turán^[1] proved the inequality (1) in L_{∞} - norm, later, A. K. Varma^[2] Extended it to L_2 - space, and recently, in ^[3], we obtained the similar result in L_p - space (1 $\leq p < \infty$).

Now we ask whether it is valid that $\int_{-1}^{1} |f'(x)|^p dx \ge C\sqrt{n}^p \int_{-1}^{1} |f(x)|^p dx$ for $f(x) \in H_n$ and 0 ? This paper will give a positive answer to this question.

2. Some Lemmas

We first establish some lemmas. Let $-1 < x_1 < x_2 < \cdots < x_s < 1$ be all roots of $f(x) \in H_n$, x_i a root of order l_i , a_i a maximum point of |f(x)| in (x_i, x_{i+1}) , and $p \in (0, 1)$. In the following lemmas, we consider only the case of the interval (x_i, a_i) , but we must point out that there are similar results corresponding to the interval (a_i, x_{i+1}) .

Lemma 1. Let
$$l(x) = \sum_{k=1}^{s} \frac{l_k}{x - x_k}$$
.

(i) If $a_i - x_i < \frac{1}{\sqrt{n}}$, then there exists ξ_i (x_i, a_i) satisfying $\xi_i > \frac{a_i + 2x_i}{3}$ such that $|I(x)| > \frac{2}{3} \sqrt{n}$, for $x(x_i, \xi_i)$, (2)

$$|l(x)| \leqslant \frac{2}{3}\sqrt{n}$$
, for $x \in [\xi_i, a_i]$. (3)

^{*} Received July 6, 1983.

(ii) If $a_i - x_i > \frac{1}{n}$, then there exists $\xi_i' \in (x_i, a_i)$ satisfying $\xi_i' > a_i - \frac{1}{2\sqrt{n}}$ such that

$$|l(x)| > \sqrt{\frac{n}{8}} \text{ for } x \in (x_i, \xi_i'),$$
 (4)

$$|l(x)| \quad \frac{\sqrt{n}}{8} \text{ for } x \in (\xi_i', a_i), \qquad (5)$$

Proof. (i) Obviously, $l(x) = \frac{f'(x)}{f(x)}$, and l(x) is continuous and decreasing in (x_i, a_i) , $\lim_{x \to x_{i,0}} l(x) = +\infty$, $l(a_i) = 0$, then there exists $\xi_i \in (x_i, a_i)$ such that $l(\xi_i) = \frac{2}{3}\sqrt{n}$, hence the monotonicity of l(x) implies (2) and (3). We prove that $\xi_i \geqslant \frac{a_i + 2x_i}{3}$ as follows.

It is easily seen that $l(x) = \int_{x}^{a_i} \sum_{k=1}^{s} \frac{l_k}{(t-x_k)^2} dt$ for $x \in (x_i, a_i)$, therefore $(\frac{a_i+2x_i}{3}) = \int_{-\frac{a_i+2x_i}{3}}^{a_i} \sum_{k=1}^{s} \frac{l_k}{(t-x_k)^2} dt > \int_{-\frac{a_i+2x_i}{3}}^{\frac{a_i+2x_i}{3}} \frac{1}{(t-x_i)^2} dt > \frac{4}{(a_i-x_i)^2} \frac{a_i-x_i}{6}$

$$=\frac{2}{3}\frac{1}{a_i-x_i}, \text{ from } a_i-x_i \leq \frac{1}{n} \text{ we get} \quad \left(\frac{a_i+2x_i}{3}\right) \geqslant \frac{2}{3}\sqrt{n}, \text{ that is } \xi_i \geqslant \frac{a_i+2x_i}{3}.$$

(ii) Similarly, there exists such $\xi_i' \in (x_i, a_i)$ that (4) and (5) are valid, besides $\left| l\left(a_i - \frac{1}{2\sqrt{n}}\right) \right| = \left| l\left(a_i - \frac{1}{2\sqrt{n}}\right) - l\left(a_i\right) \right| = \sum_{k=1}^{s} \frac{l_k}{(\delta - x_k)^2} \frac{1}{2\sqrt{n}}$, where $\delta \in (a_i - \frac{1}{2\sqrt{n}}, a_i)$.

From $\sum_{k=1}^{s} \frac{l_k}{\left(\delta - x_k\right)^2} \gg \frac{n}{4}$ we get $l\left(a_i - \frac{1}{2\sqrt{n}}\right) \gg \frac{\sqrt{n}}{8}$, and it follow that $\xi_i' \gg a_i - \frac{1}{2\sqrt{n}}$

from the monotonicity of l(x) in (x_i, a_i) .

Lemma 2. Suppose that ξ_i , ξ_i' are numbers in Lemma 1, then the following inequalities are true:

$$l\left(\frac{2a_{i}+\xi_{i}}{3}\right) \geqslant \frac{1}{19}l\left(\xi_{i}\right),$$
 (6)

$$l\left(\frac{2a_{i}+\xi_{i}'}{3}\right) \geqslant \frac{1}{9}l(\xi_{i}')$$
 (7)

Proof. We first prove (6). Assume that $l(\xi_i) - l(\frac{2a_i + \xi_i}{3}) = \frac{2}{3}(a_i - \xi_i)$. $\sum_{k=1}^{s} \frac{l_k}{(\sigma - x_k)^2}, \text{ where } \sigma \in [\xi_i, \frac{2a_i + \xi_i}{3}]; \text{ and } l(\frac{2a_i + \xi_i}{3}) = \frac{a_i - \xi_i}{3} \sum_{k=1}^{s} \frac{l_k}{(\eta - x_k)^2}$ where $\eta \in [\frac{2a_i + \xi_i}{3}, a_i]$. For $k \le i$, it follows from Lemma 1 that $\sigma - x_k \ge \xi_i - x_i$ $\ge \frac{1}{3}(a_i - x_i). \text{ Then } \eta - x_k = \eta - \sigma + \sigma - x_k \le a_i - \xi_i + \sigma - x_k \le 3 \quad (\sigma - x_k). \text{ For } k > i, \text{ it}$ is clear that $|\eta - x_i| \le |\sigma - x_i|$. Hence $|t(\frac{2a_i + \xi_i}{3}) - \frac{a_i - \xi_i}{3} \sum_{k=1}^{s} \frac{l_k}{(\sigma - x_k)^2} \ge \frac{a_i - \xi_i}{3}$

is clear that
$$|\eta - x_k| \le |\sigma - x_k|$$
. Hence $l(\frac{2a_i + \xi_i}{3}) = \frac{a_i - \xi_i}{3} \sum_{k=1}^{s} \frac{l_k}{(\sigma - x_k)^2} \frac{(\sigma - x_k)^2}{(\eta - x_k)^2} \ge \frac{a_i - \xi_i}{3}$.
$$\cdot \sum_{k=1}^{s} \frac{l_k}{(\sigma - x_k)^2} \frac{1}{9} = \frac{1}{18} (l(\xi_i) - l(\frac{2a_i + \xi_i}{3})), \text{ that is } l(\frac{2a_i + \xi_i}{3}) \ge \frac{1}{19} l(\xi_i).$$

The proof of the inequality (7) is similar to that of (6).

Lemma 3. If
$$a_i - x_i \leq \frac{1}{n}$$
, then $\int_{x_i}^{a_i} |f'(x)|^p dx \geq C\sqrt{n^p} \int_{x_i}^{a_i} |f(x)|^p dx$.

Proof. We consider the following two cases.

Case 1.
$$|f(\xi_i)| \ge \frac{1}{2} |f(a_i)|$$
. Taking into account that $\int_{x_i}^{a_i} |f'(x)|^p dx$

= $\int_{x_i}^{a_i} |f(x)|^p |l(x)|^p dx$, and from Lemma 1 and Lemma 2 we get

$$\int_{x_{i}}^{a_{i}} |f'(x)|^{p} dx \ge \left(\frac{2\sqrt{n}}{57}\right)^{p} \int_{x_{i}}^{\frac{2a_{i}-\xi_{i}}{3}} |f(x)|^{p} dx.$$
 (8)

Since $|f(\xi_i)| \ge \frac{1}{2} |f(a_i)|$, $\int_{\xi_i}^{\frac{2a_i + \xi_i}{3}} |f(x)|^p dx \ge (\frac{1}{2})^p \int_{\frac{2a_i + \xi_i}{3}}^{a_i} |f(x)|^p dx$.

Combine it with (8), we have

$$\int_{x_i}^{a_i} |f'(x)|^p dx \geqslant \frac{1}{2} \left(\frac{1}{57}\right)^p \sqrt{n^p} \int_{x_i}^{a_i} |f(x)|^p dx.$$

Case 2. $|f(\xi_i)| < \frac{1}{2} |f(a_i)|$. From (3) we get $|f'(x)| = |f(x)| |l(x)| < |f(a_i)| \frac{2}{3} \sqrt{n}$

for $x \in (\xi_i, a_i)$. Hence

$$\int_{x_{i}}^{a_{i}} |f'(x)|^{p} dx \gg \int_{\xi_{i}}^{a_{i}} |f'(x)|^{p-1} |f'(x)| dx \gg \left(\frac{2}{3}\sqrt{n}\right)^{p-1} |f(a_{i})|^{p-1} \int_{\xi_{i}}^{a_{i}} |f'(x)| dx$$

$$= \left(\frac{2}{3}\sqrt{n}\right)^{p-1} |f(a_{i})|^{p-1} |f(a_{i}) - f(\xi_{i})|.$$

 $= \left(\frac{2}{3}\sqrt{n}\right)^{p-1} \left| f(a_i) \right|^{p-1} \left| f(a_i) - f(\xi_i) \right|.$ Combining it with $\left| f(\xi_i) \right| < \frac{1}{2} \left| f(a_i) \right|$ and $a_i - x_i < \frac{1}{\sqrt{n}}$, we have

$$\int_{x_{i}}^{a_{i}} |f'(x)|^{p} dx \gg \frac{1}{2} \left(\frac{2}{3}\right)^{p-1} \sqrt{n^{p-1}} |f(a_{i})|^{p} \gg \frac{1}{2} \left(\frac{2}{3}\right)^{p-1} \sqrt{n^{p}} \int_{x_{i}}^{a_{i}} |f(x)|^{p} dx. \quad \blacksquare$$

Lemma 4. If $a_i - x_i > \frac{1}{\sqrt{n}}$, then $\int_{x_i}^{a_i} |f'(x)|^p dx > C\sqrt{n}^p \int_{x_i}^{a_i} |f(x)|^p dx$.

Proof. Obviously $\int_{x_i}^{a_i} |f'(x)|^p dx > (\sqrt{\frac{n}{72}})^p \int_{x_i}^{\frac{2a_i + \xi_i}{3}} |f(x)|^p dx$, similar to the

proof of Lemma 3, we have $\int_{x_i}^{a_i} |f'(x)|^p dx \gg C\sqrt{n}^p \int_{\xi_i'}^{a_i} |f(x)|^p dx$, thus we complete the proof of Lemma 4.

3. Main Results.

Theorem 1. If $f(x) \in H_n$, then

$$\int_{-1}^{1} |f'(x)|^{p} dx \ge C\sqrt{n}^{p} \int_{-1}^{1} |f(x)|^{p} dx \qquad (0$$

Proof. From $\int_{-1}^{x_1} |f'(x)|^p dx = \int_{-1}^{x_1} |f(x)|^p |l(x)|^p dx$, we get easily that

$$\int_{-1}^{x_1} |f'(x)|^p dx \ge \left(\frac{n}{2}\right)^p \int_{-1}^{x_1} |f(x)|^p dx.$$
 (9)

Similarly,

$$\int_{x_{i}}^{1} |f'(x)|^{p} dx \ge \left(\frac{n}{2}\right)^{p} \int_{x_{i}}^{1} |f(x)|^{p} dx.$$
 (10)

Taking into account Lemma 3 and Lemma 4, it follows that

$$\int_{x_i}^{a_i} |f'(x)|^p \mathrm{d}x \geqslant C\sqrt{n}^p \int_{x}^{a_i} |f(x)|^p \mathrm{d}x. \tag{11}$$

Similarly,

$$\int_{a_{i}}^{x_{i+1}} |f'(x)|^{p} dx \gg C\sqrt{n^{p}} \int_{a_{i}}^{x_{i+1}} |f(x)|^{p} dx .$$
 (12)

We write

$$\int_{-1}^{1} |f'(x)|^{p} dx = \int_{-1}^{x_{1}} |f'(x)|^{p} dx + \int_{x_{k}}^{1} |f'(x)|^{p} dx + \sum_{k=1}^{s-1} \int_{x_{k}}^{a_{k}} |f'(x)|^{p} dx + \sum_{k=1}^{s-1} \int_{a_{k}}^{x_{k+1}} |f'(x)|^{p} dx,$$

and from (9)—(12) we get $\int_{-1}^{-1} |f'(x)|^p dx > C\sqrt{n^p} \int_{-1}^{1} |f(x)|^p dx$.

Taking
$$f(x) = (1 - x^2)^k$$
, $k = (\frac{n}{2})$, we have
$$\int_{-1}^{1} |f(x)|^p dx \sim Cn^{\frac{1}{2}}, \quad \int_{-1}^{1} |f'(x)|^p dx \sim Cn^{\frac{p-1}{2}},$$

and from this we easily see that the order of n in Theorem 1 cannot be improved. Applying similar means, the result above can be slightly extended to

Theorem 2. If $f(x) \in \mathbb{R}_n$ has at most k roots lying outside (-1, 1), then $\int_{-1}^{1} |f'(x)|^p dx \gg C_k \sqrt{n^p} \int_{-1}^{1} |f(x)|^p dx$, where C_k is a positive constant only depending on k, 0 .

For periodic case, we have the similar result:

Theorem 3. If $t(x) \in \mathbb{R}_n^*$, then

$$\int_{-\pi}^{\pi} |t'(x)|^p dx \gg C \sqrt{n^p} \int_{-\pi}^{\pi} |t(x)|^p dx \qquad (0$$

Taking $t(x) = (\cos \frac{x}{2})^{2n}$, it is easily seen that the order of n of the above expression cannot be improved.

References

- [1]. Turan P., Über die Ableitung von Polynomen, Compositio Math., 7 (1939), 89-95.
- (2) Varma, A. K., An analogue of some inequalities of P. Turán concerning algebraic polynomials satisfying certain conditions, Proc. Amer. Math. Soc., 55 (1976), 305-309.
- 〔3〕周颂平,关于L。尺度下的Turan 不等式,杭州大学学报(自然科学版),待发表。