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| . introduction

Denote by H, the set of n—th algebraic polynomials all whose roots lie in-
side (-1, 11, R, is the class of algebraic polynomials of degree n which have
only real roots, and Ris the class of trigonometric polynomials of degree n hav-
ing only real zeros, Let C be a positive absolute constant, which may be differ-
ent in different places. '

Theorem T. If f(x)€H,, then

Ir "L,(—l. 1 >C/nl f "L,[—l.lj (A< r<o) , (1)
where | » | ¢, ,yis the L,~norm on (-1, 173,

In 1939, P. Turan®!’ proved the inequality (1) in L, - norm, later, A. K.
Varma'?’ Extended it to L,-space, and recently, in¢3’
result in L,—~space (1< p <o) .

Now we ask whether it is valid that_f‘_1 | F(x) |"dx>C~/_rT"_[‘l_1 | FCx ) |Pdx

, we obtained the similar

for f(x)eH, and 0 < p<17 This paper will give a positive answer to this -

question.

2. Some Lemmas

We first establish some lemmas. Let — 1 <x;<{x;<e+<{x,< 1be all roots of
f(x)eH,, x; a root of order /;, ¢; a maximun point of |f(x) | in (x, x,,),
and pe(0, 1). In the following lemmas, we consider only the case of the
interval (x;, a;), but we must point out that there are similar results correspond-

ing to the interval (a;, x;,1)-

5 Ik
. Let / =) —
Lemma |. Let /(x)=) "~

. 1 . . L.t 2x,
(i) If a,—x,-<;/:, then there exists ¢, (x;, a,)satisfying §,>————3— §uch
n
that l1(x) |>—§—J7, for x (x;, &7, 2)
[1¢x) |<%\/_r7, for x (& a) - , (3)
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(i) If a,—x,.>=1 , then there exists ¢&; € (x;, ;) satisfying §f>a,—ﬁsuch
n
that
U(x)lx for x € (x;, &1, (4)
¢l Jgforxez;:,aij, (5)
. . _ S (x) . .
Proof. (i) Obviously, l(x)—f(x) , and /(x) is continuous and decr—
easing in (x;, ¢,] , lim /(x)= +o00, [(a;)= 0, then there exists {; e (x;, a;)

X*X;. 0

such that l(gi)zl\/n hence the monotonicity of /(x) implies (2) and (3).

2x;
We prove that §,/—~3Las follows.
a; 5 lk
It is easily seen that l(x)=j kE s—dt for x ¢ (x;, a:]) , therefore
= (1t~ Xxp)
a;+2x, ) _fa" 2 . _[L*_xd,;jw%k 1 de> 4 a;— Xx;
3 e = (- x)t T wrin -y (@—x) 6
=2 1 1 a;it+2x, 2 — . a;+2x;
Sa—x from a;”x,-%—_’; we get /( — ) >?\/n , that is ;,-)-—————3 .
(ii) Similarly, there exists such ;,’F (x;,a,) that (Dand (3) are valid, besides
1 - / 1
l,-——_=l(,-_l _ e 1 - .
| (a 2\/ﬂ)| ! a \/ ) (a)l ;1((5 xk)2 2 n ’ where 66[01 2‘\/7,‘1!]-
Ie n J . ’ 1
From ; ———>— we get / (a;— _)> , and it follow that ¢; >a,— ——
L G- x0’ 2/ n 2/ n

from the monotonicity of /(x) in (x;, a;) . B

Lemma 2. Suppose that &, ¢/ are numbers in Lemma 1, then the follow-

ing inequalities are true,

2a,+ ¢, 1
L (—5H) 31610 €6
2ai+ ¢ /
l(a—sé_)>Ll(§i) . 7
Proof. We first prove (6) . Assume that 7 ({,) _1( f: —3 ) 3l@m)
s I8 2a;+ ¢, 2a,+¢, _a"_g" - —lk
T where o ¢ (¢4, 3—] 3 and I( 3 )= 3 -gl (n=x0°

al+§'

2a;t+ ¢
where ’76['—’3—_’ a;) . For k<i, it foHlows from Lemma 1 that o0 -x:>¢,~-x;

1
>?(a,-—x,-)_ Then n-x,=n-o+to-Xk<a;i—¢,+0-x,)<3 (0-x1) . For k>i, it

NS s L (@=-x0) _ai-
is clear that |y-x,|< |0 -x.|. Hence s f 3‘5' (o~\fk)z (;7~x:)2 l 351
: Iy 1 _ _ Stl t4i _1._ )
g Dy 3‘18(’(5) 1), that is 1 PHRE >
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The proof of the inequality (7 ) is similar to that of (6 ). |

Lemma 3. If a,-—x,%é, then f N (x) |de>Cfn7’Jd 1 fCx) |dx.
, " . 3

Proof. We consider the following two cases.

Case 1. | f(¢) |>-§—|f(ai) | . Taking into account that fﬂl | £ (x) |*dx

a;
=f [fCx)|?|1(x)|?dx, and from Lemma 1and Lemma 2 we get

X

- q ; o e T
Jx,'f(x)'pdx>(%7£')”fx T [rax, (8)

Ba,+ ¢,

Since | f(¢) ]>-é1—lf(a,-) I J‘ }
¢

1

lfc Pax= 7 [, 1£(x) 7dx.
3
Combine it with (8),‘we have
J I coras3 ()7 [" rco rax.
Case 2. |f(¢) |<%~ |f(a)|. From (3) we get
|7y = e i [< | fap |2y
for x ¢ (¢;, a;). Hence

[ e l"dX>f;' £ G 1717 Qe [ax> G Ry feapl™ [ £ Coldx
xl ! h . g“

= &y | feap |7 [ flap- £ |,

Combining it with | f(¢&) |<% |fa) | and a,- x,< , we have

Sl

23
Lemma 4. If a,—x,.>\/—_;l__1—, then j ’|f4(x) |pdx>CJ7,‘pf i'f(.x) |?dx.
a ‘ B 2a,+ ¢, N
Proof. Obviously f ' [f (x)|Pdx> ( ~/,7”E) pf 3 [ f(x) |#dx, similar to the

jx’ I f (x)|"dx> L2 7207 flap |P>%(%)P“[n‘ﬂ J’a' [fCx) |?dx. B

a, . a,
proof of Lemma 3, we have f ]f (x)|Pdx>CJn ”f ]f( x) |?dx, thus we com-
x, ¢

plete the proof of Lemma 4. [}
3. Main Results.

Theorem I. If f(x)eH,, then
1 1

J 1 codescyme [ rco e 0 <p<L),
!
Proof. FromJ‘ X|1|/’(x) |"dx=J‘xl | f(x)]?]1(x) [*dx, we get easily that
- -1
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X, n Xy
s copaxs (577 1560 Pz, (9)

Similarly,
1 1

[ 1 ¢x) |Pdx> (57 1) Jrax. 10)
Taking into account Lemma 3 and Lemma 4 , it follows that

Jr e praxsc e [ rex [ax. 1)
Similarly, " i

[ oy Prdx>c e [T e P (12)
We write “ ' “

JLlrcobax=[" 15 o paxs 17 o fraxe L1 o pas

Xk+1

s—1
+ P
kglj‘ |f(x)|dx’

a

-1 o
and from (9)—(12) we get j_l {7 (x) |"dx=C n? y¥1'|f(x) [’dx.

Taking f(x j: (1 -xH*, k= [—g—], we have

Lk B

1 1 1
f | f(x) |Pdx~Cn?, j |f (x)|Pdx~Cn 2
-1 -1

3

and from this we easily see that the order of n in Theorem 1 cannot be im-
proved. Applying similar means. the result above can be silghtly extended to

Theorem 2. If f(x)€R, has at most k roots lying outside (-1, 1'j, then
1 Al ‘
f [f (x)|Pdx>C,J n’j | f(x) |Pdx. where C, is a positive constant only de-
-1 -1

pending on k, o< p<1.
For periodic case, we have the similar result.

Theorem 3 . If r(x)eR}, then
f |t’(x)]"dx>CJ7"f lr(x) |*dx (0<P<1) .

Taking t(x):(cos%)z" , 1t is easily seen that the order of n of the above

expression cannot be improved,
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