The Uniqueness and Approximate Solution of the Positive Solution of the Uniform u₀-convex Operator Equation*

Li Guo-Zhen (李国桢)

(Jiangxi Normal University, Nanchang, China)

M.A.Krasnosel'skii (1) proposed that "under what conditions does the solution of convex operator equation Ax = x exist and unique?".Because problem itself is more difficult, its development is quite slow.Lately Guo Da-Jun (2) suggested explicitly that "under what conditions does u_0 -convex operator have unique positive fixed point?".

Chang and Kang [3] studied conditions under which the uniform u_0 -co-nvex operator equations have positive solution.

In this paper we discuss uniqueness of positive solution of the uniform u_0 -convex operator equation and construct the solution by method of successive approximation.

Let E be real Banach space, P be a normal cone in E, $u_0 \in P$ and $E_{u_0} = \{x \mid x \in E$, there exist $\lambda > 0$ such that $-\lambda u_0 \leqslant x \leqslant \lambda u_0\}$ and $P_{u_0} = P \cap E_{u_0}$. If we set for $x \in E_{u_0}$, $\|x\|_{u_0} = \inf \{\lambda \mid \lambda > 0, -\lambda u_0 \leqslant x \leqslant \lambda u_0\}$, the nonlinear operator $A: P_{u_0} \rightarrow P_{u_0}$ is called monotonic increasing under CH_{u_0} -meaning, if the operator

$$Bx = \begin{cases} \|x\|_{u_0}^2 A \left(\frac{x}{\|x\|_{u_0}^2}\right) & x \neq 0 \\ \theta & x = 0 \end{cases}$$

is monotonic increasing (i, e $\theta \leqslant x \leqslant y \rightarrow Bx \leqslant By$).

Other notations are same as (1) and (4).

The result of this paper is following:

Theorem. Let E be a real Banach space. Let P be a normal cone in E. Suppose that the operator $A: P_{u_0} \rightarrow P_{u_0}$ is uniform u_0 -convex and monotonic increasing under CH_{u_0} -meaning. If there exist $v_0, w_0 > \theta$ in P_{u_0} such that

$$\frac{v_0}{\|v_0\|_{u_0}^2} \leqslant A(\frac{v_0}{\|v_0\|_{u_0}^2}), A(\frac{w_0}{\|w_0\|_{u_0}^2}) \leqslant \frac{w_0}{\|w_0\|_{u_0}^2}$$

$$(1)$$

Then operator equation Ax = x has unique nonzero positive solution $x^* \in P_{u_0}$ and for an arbitrary $y_0 \in P_{u_0}(y > \theta)$ we construct sequences by successive approximation

^{*}Received Mar. 12, 1984.

$$y_n = By_{n-1}$$
 and $x_n = A(\frac{y_{n-1}}{\|y_{n-1}\|_{H^0}^2})$ $(n = 1, 2, 3, \dots)$. (2)

Then $||x_n - x^*|| \to 0 \ (n \to \infty)$, i, e x_n is the approximate solution of the operator equation Ax = x.

Proof: By assumption of this theorem, operator $A:P_{u_0}-P_{u_0}$ is uniform u_0 -convex and monotonic increasing under CH_{u_0} -meaning. By theorem 2.1 of [3], we know that operator

$$\mathbf{B}x = \begin{cases} \|x\|_{u_0}^2 A(\frac{x}{\|x\|_{u_0}^2}), & x \neq \theta \\ \theta & x = \theta \end{cases} (x \in \mathbf{P}_{u_0})$$

maps P_{u_0} into P_{u_0} and is uniform u_0 -concave and monotonic increasing. By (1) we obtain $v_0 \le Bv_0$, $Bv_0 \le w_0$.

From theorem 1 of (4), operator equation By = y has nonzero solution $y^* = By^*$.

By theorem 6.3 of (1), we know that y^* is unique solution. From definition of operator B, the operator equation Ax = x has positive solution $x^* = \frac{y^*}{\|y^*\|_{u_0}^2}$, i, e

$$A(\frac{y^*}{\|y^*\|_{H^0}^2}) = \frac{y^*}{\|y^*\|_{H^0}^2}$$
 or $Ax^* = x^*$.

By virtue of rotation between A and B, the existence and uniqueness of nonzero positive solution of operator equation Ax = x and By = y are equivalent. Hence operator equation Ax = x has an unique nonzero positive solution.

Let y_0 be an arbitrary nonzero element of P_{u_0} . We construct sequence of successive approximation

$$y_n = By_{n-1}$$
 $(n = 1, 2, 3, \dots)$ (3)

By theorem 6.7 of [1], $||y_n - y^*|| \to 0$ $(n \to \infty)$. Since the cone P is normal, $||y_n - y^*|| \to 0$ $(n \to \infty)$, i, e y_n are a proximate positive solutions of equation $||y_n - y^*|| \to 0$ where $||y_n - y^*|| \to 0$ $||y_n - y^*|| \to 0$ $||y_n - y^*|| \to 0$ where $||y_n - y_n|| \to 0$ $||y_n - y_n|| \to 0$

$$By = y \cdot By (3) \text{ we obtain } \frac{y_n}{\|y_{n-1}\|_{u_0}^2} = A \left(\frac{y_{n-1}}{\|y_{n-1}\|_{u_0}^2} \right) \cdot \text{Set } x_n = A \left(\frac{y_{n-1}}{\|y_{n-1}\|_{u_0}^2} \right),$$

$$\|x_n - x^*\| = \|A \left(\frac{y_{n-1}}{\|n-1\|_{u_0}^2} \right) - \frac{y^*}{\|y^*\|_{u_0}^2} \| = \|\frac{y_n}{\|y_{n-1}\|_{u_0}^2} - \frac{y^*}{\|y^*\|_{u_0}^2} \|$$

$$= \frac{1}{\|y_{n-1}\|_{u_0}^2} \|y_n\|y^*\|_{u_0}^2 - y^*\|y_{n-1}\|_{u_0}^2 \|$$

$$= \frac{1}{\|y_{n-1}\|_{u_0}^2} \|y_n\|y^*\|_{u_0}^2 - y^*\|y^*\|_{u_0}^2 + y^*\|y^*\|_{u_0}^2 - y^*\|y_{n-1}\|_{u_0}^2 \|$$

$$= \frac{1}{\|y_{n-1}\|_{u_0}^2} \|y_n\|y^*\|_{u_0}^2 + \|y^*\|_{u_0}^2 + \|y^*\|_{u_0}^2 + \|y^*\|_{u_0}^2 - \|y_{n-1}\|_{u_0}^2 \|$$

$$= \frac{1}{\|y_{n-1}\|_{u_0}^2} \|y^*\|_{u_0}^2 + \|y^*\|_{u_0}^2 + \|y^*\|_{u_0}^2 + \|y^*\|_{u_0}^2 + \|y^*\|_{u_0}^2 - \|y_{n-1}\|_{u_0}^2 \|$$

$$=\frac{1}{\|y_{n-1}\|_{u_0}^2\|y^*\|_{u_0}^2}\left\{\|y_n-y^*\|\cdot\|y^*\|_{u_0}^2+\|y^*\|\cdot\|\|y^*\|_{u_0}-\|y_{n-1}\|\cdot\|\|y^*\|_{u_0}+\|y_{n-1}\|\cdot\|_{u_0}\right\}.$$

 $+ \|y_{n-1}\| \mid \} .$ Since $\|y_n - y^*\| \to 0$ and $\|y^*\|_{u_0} - \|y_{n-1}\|_{u_0} \mid \to 0$ (by continuity of u_0 -norm), we obtain $\|x_n - x^*\| \to 0$ $(n \to \infty)$. Then

 $x_n = A(\frac{y_{n-1}}{\|y_{n-1}\|_{u_0}^2})$ is the approximate positive solution, where y_0 is an arbitrary nonzero element in P_{u_0} , $y_n = By_{n-1}$ $(n = 1, 2, 3, \dots)$.

References

- [1] M.A. Krasnosel'skii, Positive Solution of Operator Equation, Noordhoff, Groningen (1964).
- [2] Guo Da-Jun, The positive fixed point of nonlinear operator and its applications, 5 (1983)(to appear).
- [3] Chang Shihsen and Kang Shikun, Journal of Chengdu University of Science and Technology, 1 (1982) (Chinese).
- [4] И.А.Бахтин, СИСК, МАТЕМ, Ж.Т., 4:2 (1963).
- [5] J.A. Gatica and H.L. Smith, J. Math. Anal. Appl., 61 (1977), 58-71.