Solvable CN-Groups and π -Separable $C\pi\pi$ -Groups*

Shi Wujie (施武杰) Yang Wenze (杨文泽)

(Southwest Normal University)

G. Higman studied first the finite groups in which every element has prime power order except 1(see[1]), that is, the centralizer of every element is is a p-group except 1. Later many authors have generalized it. On the one hand, the generalization is CN-groups, that is, the finite groups in which the centralizer of every element is nilpotent except 1(see[2,3]). On the other hand, the generalization is C22-groups, that is, the groups are of even order and the centralizer of any involution is a 2-group; a C22-group named again CIT-group(see[3]).[3]showed that a nonsolvable CN-group and a nonslyable CIT group are identical and classified such groups completely. About solvable CNgroups(2,13) have had a discussion. In recent years Z. Arad and other authors generlized a C22-group to a Cpp-group G, i.e. the centralizer of any non-identity p-element is a p-group for some prime p||G|. They further generalized to a $C\pi\pi$ -group, i.e. the centralizer of any non-identity π -element is a π -group of G, in which π is a nonempty proper subset of all prime divisors of |G|. About Cpp-groups [5,6] classified such groups completely for p=3. About $C\pi\pi$ groups (14, 15, 16) have had a discussion when it is π -solvable.

The main content of this paper is to continue a discussion of solvable CN-groups and π -separable $C\pi\pi$ -groups. The results indicate that they possess roughly the same structure. This paper apply mainly the theory of fixed-point-free actions, thus the obtained results are more extensive and detailed than predecessors. In addition, we have produced the sufficient and necessary condition which CN-groups and $C\pi\pi$ -groups are either solvable or supersolvable.

I. Solvable CN-Groups

Lemma 1. Let G be a CN-group, H_1 and H_2 be nilpotent subgroups of G_1 $(|H_1|, |H_2|) = 1$. If there are $1 \neq x_1 \in H_{1/2}$ i = 1, 2, satisfy $x_1x_2 = x_2x_1$, then H_1 and H_2 green state elementwise.

This lemma is a generalization of [2] Lemma 2.3. Their proofs are all the same. By Lemma 1, the maximal nilpotent subgroups of G are Hall subgroups.

Lemma 2. Let G be a CN-group, if the 2-sylow subgroup of G is a generalized

^{*} Received Mar. 10, 1984.

quaternion group, then G has a normal 2-complement, thereby G is solvable.

Proof. Since the 2-sylow subgroups of G are generalized quaternion groups, by [7] G possesses a maximal odd normal subgroup G_1 . Thus it causes G/G_1 to have a central element a of order 2. But since G_1 is an odd order group, it is solvable. By [2] Lemma 1.5 we see that G/G_1 is a CN-group, thus $G/G_1 = C_{G/G_1}$ (a) is an anilpotent group. Furthermore, from the maximum property of G_1 we see that G/G_1 is a 2-group, hence G has a normal 2-complement G_1 , therefore G is solvable.

As pointed out in the proof of (2) Lemma 1.8, Burnside's theorem on fixed-point-free actions ((8), p336 TheoremV) is false in general, but it is true for CN-groups.

Theorem !. Let CN-group H act fixed-point-free on a group $K \neq 1$, then H is either a cyclic group or the direct product of a generalized quaternion group and a cyclic group of odd order.

Proof. By [9] Theorem 7.24, every sylow subgroup of H is a cyclic group or a generalized quaternion group. When the 2-sylow subgroup S2 of H is cyclic, then by Burnside's theorem ([10] Theorem 14.3.1), H has a normal 2-compleme nt, therefore H is solvable. When S2 is a generalized quaternion group, also by Lemma 2 H is solvable. Thus H has a $p_1 p_2$ -Hall subgroup L for any $p_1 p_2 ||H|$. Let $p_1 < p_2$. If p_1, p_2 -sylow subgroups are cyclic, then $P_2 < P_1 P_2 = L$. Hence if a is an element of order p_1 of P_1 and p_2 is an element of order p_2 of P_2 , then Lhas the subgroup $\langle a,b\rangle$ of order p_1p_2 , moreover $\langle b\rangle \triangleleft \langle a,b\rangle$. If a and b do not permute, since $\langle b \rangle \cap K = 1$, then a does not permute with the elements of K ex cept 1 either. Thus $\langle a \rangle$ acts fixed-point-free on $\langle b \rangle$ K, by Thompson's theorem ([9]Theorem 12.9), $\langle b \rangle K$ is nilpotent, contrary to that $\langle b \rangle$ acts fixed-point-free on K. Therefore a permutes with b, and by Lemma 1, $L = P_1 \times P_2$. If P_1 is a generalized quaternion group, then by Lemma 2 $P_2 \le P_1 P_2 = L$. Let a be an eleme nt of order 2 of P_1 , b be an element of order p_2 of P_2 . Since P_2 is a cyclic group, its subgroups are characteristic subgroups. We see that $\langle b \rangle \subset L$ and we obtain the group $\langle a \rangle \langle b \rangle$ of order 2p. As the discussion above we conclude that a and b permute, $L = P_1 \times P_2$. Hence the elements of Sylow subgroups of coprime orders of H permute. Therefore H is nilpotent, and the theorem is proved.

Theorem 2. The Fitting subgroup F of CN-group G is either a Hall subgroup of G or a p-group. If G is nonsolvable, then F=1 or F is a 2-group.

I. When $F \neq 1$ is a Hall subgroup of G, then G = F or G = HF, $H \cap F = 1$. H is a cyclic group or the direct product of a generalized quaternion group and a cyclic group of odd order. Furthermore, G is a Frobenius group with Frobenius kernel F.

II. When G is solvable and F is not a Hall subgroup of G, then F is a p-group, G = PHF, $HF \triangleleft G$, in which P is a cyclic p-group; H is a cyclic p'-group. Furthermore, PH is a Frobenius group with Frobenius kernel H, HF is a Frobenius group with Frobenius kernel F. Also if p_1, p_2, \dots, p_r a all differ ent prime factors of |H|, then $|P||(p_1-1, p_2-1, \dots, p_r-1)$.

Proof. If F is not a p-group, let $q_1||F|$, then |F| possesses another prime factor q_2 at least. We write Q_1 , Q_2 as q_1 , q_2 -sylow subgroups of G separately, $Q_{q_1}(G)$ for maximal normal q_i -subgroup of G, $D=Z(O_{q_2}(G))$. Since $F=O_{q_1}(G)\times O_{q_2}(G)\times \cdots$, by Lemma 1, thus any element of Q_1 permute any element of D, that is, $C_G(D)>Q_1$. Moreover, since D is a characteristic subgroup of $O_{q_2}(G)$, thus it is a characteristic subgroup F, we conclude that D<|G|, hence $C_G(D)<|N_G(D)|=G$. But since G is a $C:N^*$ -group and $C_G(D)$ is a nilpotent group, D<|Z|, we see that $C_G(D)=|F|$. Thus $F>Q_1$, therefore F is a Hall subgroup of G.

when $F \neq 1$, if F is a Hall subgroup of G, and $F \neq G$, since $F \triangleleft G$, then G splits over F, i. e. G = HF, $H \cap F = 1$, and since $C_G(F)$ is a nilpotent normal subgroup of G, $C_G(F) < F$, therefore F is a maximal nilpotent subgroup of G. Hence the elements of H does not permute with the elements of F except 1, i.e. $C_G(y) < F$, $1 = y \in F$, therefore H acts fixed-point-free on F. From theorem 1, H is either a cyclic group or the direct product of a generalized quaternion group and a cyclic group of odd order, again by [9] Theorem 10.5, G is a Frobenius group with Frobenius kernel F. In this case G is obviously solvable. Suppose F is a p-group, as the proof above we show easily that any p-element and p'-element do not permute. If $p \neq 2$, then as G is a group of even order and 2-sylow subgroup S2 of G is a generalized quaternion group, by Lemma mma 2, G is solvable. Suppose S2 is not a generalized quaternion group, then since S_2 acts fixed-point-free on F, we infer that S_2 is a cyclic group. Moreover, by Burnside's theorem ([10] Theorem 14.3.1), G has a normal 2-complement, thus Gis solvable. Therefore, if G is nonsolvable, then F=1 or F is a 2-group.

When G is solvable and F is not a Hall subgroup of G, we may assume that F is a p-group. Let us write H as p-complement of G, H acts fixed point-free on F, by Theorem I. H is a cyclic group or the direct product of a generalized quaternion group and a cyclic group of odd order. Since F is a maximal p-subgroup, the minimal normal subgroup $\overline{P_i}$ of G/F is not a p-group, we may assume that HF/F contains $\overline{P_i}(\{10\}]$ Theorem 9.3.1), also since H is nilpotent group, then HF/F $\leq C_{G/F}(\overline{P_i})$. But since G/F is a CN*-group, H is

a maximal nilpotent subgroup of G, we conclude that HF/F is a maximal nilpotent subgroup of G/F, therefore.

$$C_{G/F}(\overline{P}_i) = HF/F < N_{G/F}(\overline{P}_i) = G/F$$

Thus HF \triangleleft G. Since H is a cyclic group or the direct product of a generalized quaternion group and a cyclic group of odd order, also since \overline{P}_i is contained in HF/F, and HF/F \cong H, hence \overline{P}_i is a group of prime order. $|\overline{P}_i| = p_i ||H|$, but

$$G/HF \cong \frac{G/F}{HF/F} = \frac{N_{G/F}(\overline{P}_i)}{C_{G/F}(\overline{P}_i)} \cong \text{a subgroup of a cyclic group of order } p_i - 1,$$

we conclude that G/HF is a cyclic p-group. Furthermore, $|G/HF||(p_1-1,p_2-1,\cdots,p_r-1)$, in which p_1,p_2,\cdots,p_r are different prime factors of |HF/F|=|H|. Since G/HF is a cyclic p-group, from $p|(p_1-1,\cdots,p_r-1)$ we see that p is the minimal prime factor of |G|, thus H is a group of odd order, it must be a cyclic p'-group. As the reason above, HF is a Frobenius group with Frobenius kernel F. Since HF is a solvable normal subgroup of G, H is a Hall subgroup of HF, by Frattini's argument ([11]) Proposition IV. 2.e), $G = N_G(H)HF = N_G(H)F$. Also from $N_G(H) \cap F \triangleleft N_G(H)$, we obtain that the elements of $N_G(H) \cap F \triangleleft N_G(H)$ we obtain that the elements of $N_G(H) \cap F \triangleleft N_G(H)$ we subgroup of $N_G(H)$, thus $N_G(H) = PH$, G = PHF, $P \cong PH/H \cong PHF/F \cong PHF/HF = G/HF$, P is a cyclic group. Since the p-elements and p'-elements of G do not permute, hence PH is a Frobenius group with Frobenius kernel H.

This theorem is a generalization of (1) Theorem 1, (2) Lemma 1.8, (13) p402, Theorem 1.5.

Corollary 1. If G is a 3-step group, then G = PHF, in which the meanings of P, H, F is stated in Theorem 2. II.

Proof. From [13] p401, Lemma 1.4, any 3-step group is a solvable CN-group, Again by Theorem 2, this completes the proof.

Corollary 2. CN-group G is solvable if, and only if, G has a 2-complement and the Fitting subgroup $F \neq 1$ of G.

Proof. It suffices to show sufficiency. Moreover, by Theorem 2, we need only show when F is a 2-group. Since $C_G(F)$ is a nilpotent normal subgroup of G, $C_G(F) \leq F$, hence a 2-complement H in G acts fixed-point-free on F. By Theorem 1. H is a cyclic group and $G = HS_2$, in which S_2 is a 2-sylow subgroup of G. By Wielandt-Kegel's theorem ([11] IX, 2.e), G is a solvable group.

To further understand the construction of the solvable CN-groups, first ws give the following lemma.

Lemma 3. Let group G = PQ, in which P is a cyclic group, Q is a minimal

normal subgroup of G, and Q is a sylow subgroup of G. If $C_G(Q) = Q$, $|Q| = q\beta$, then β is the exponent of $q \pmod{|P|}$.

Proof. Since Q is an elementary Abelian group of order $q\beta$, and G = PQ, from Q is a minimal normal subgroup of G we see that Q is also a minimal P-invariant subgroup of G. Whence $\rho: P \rightarrow GL(Q)$ is an irreducible representation (GL(Q) is an automorphism group of Q, it is a full linear group). By $C_G(Q) = Q$ we see that the representation is faithful. Let $P = \langle a \rangle$, then the vector space Q does not contain a proper $\rho(a)$ invariant subspace, Othe rwise it is contrary to that Q is an irreducible P module. Let the matrix corresponding $\rho(a)$ be A on a certain basis of Q, then by [12] Chapter 3, Therem 2 we see that the characteristic polynmial of A is a minimal poly nomial. Also if the order of A is m, then $A^m = I$, that is, the characteristic polynomial of A divides exactly $x^m - 1$. Hence the characteristic roots of A are all unit roots of degree m on a certain finite extension field $K(q^n)$ of a q element field C_q , moreover, there is not a repeated root. Thus if f(x) (mod q) could be reduced, $f(x) = f_1(x)f_2(x)$, we would prove easily that

$$A \sim \begin{pmatrix} A_1 & & \\ & A_2 & \end{pmatrix}$$

on C_q , in which A_1 , A_2 are respectively take $f_1(x)$, $f_2(x)$ as a characteristic polynomial. Since A is irreducible, therefore $f(x) \pmod q$ is also irreducible.

Let $_{\omega \in K}(q^n)$, $f(\omega) = 0$, thus the number of the conjugate of ω is identical with the degree β of f(x). Suppose ξ is a generator of $K(q^n)$, thus $\xi \mapsto \xi^{q}$ generates the automorphism group of $K(q^n)$, Under this automorphism, $\omega \mapsto \omega^q$. As the order of A is m, the order of ω is also m, m = |P|. Hence the all conjugates of ω are ω^{q^0} , ω^{q^1} , ..., $\omega^{q^{p^{k-1}}}$, in which y is the exponent of $q \pmod{|P|}$, therefore $\beta = y$ and the lemma is proved.

Theorem 3. Let G be a solvable CN-group, and let G be not nilpotent; let F be the Fitting subgroup of G.

I. If F is a Hall subgroup of G, then G = HF, $H \cap F = 1$. Let $H = p_1^{a_1} \cdots p_r^{a_r}$, $F = q_1^{\beta_1} \cdots q_s^{\beta_s}$.

1. When H is a cyclic group, then G possesses the chief factors $p_1, \dots, p_1, \dots, p_r, \dots, p_r; q_1^{b_1}, \dots, q_s^{b_r}, \dots, q_s^{b_s}, \dots, q_s^{b_s}$.

in which b_i is the exponent of $q_i \pmod{|H|}$, $\omega_i b_i = \beta_i (i = 1, \dots, s)$. Moreover the class of F is not more that $\sum_{i=1}^{s} \omega_i$.

2. When H is the direct product of a generalized quaternion group and

2

a cyclic group of odd order, then G possesses the chief factors

$$2, \cdots, 2: p_2, \cdots, p_2, \cdots, p_r, \cdots, p_r: q_1^{b_1}, \cdots, q_1^{b_1\omega_r}, \cdots, q_s^{b_s}, \cdots, q_s^{b_s}, \cdots, q_s^{b_s\omega_r}.$$

in which $b_i | b_{ij}$, b_i is the exponent of $q_i \pmod{H/2}$, $\sum_{j=1}^{w_i} b_{ij} = \beta_i$, b_{ij-1}

 $(i=1, \dots, s, j=1, \dots, \omega_i)$. Moreover, the class of F is not more than $\sum_{i=1}^{n} \omega_i$.

[]. If F is not a Hall subgroup of G, then G = PHF. Let $|P| = q^p$, $|H| = p_1^{a_1} \cdots p_r^{a_r}$, $|F| = q^{\beta + \gamma}$, $O \le \gamma \le \beta$, we have $q^p \mid (p_1 - 1, \dots, p_r - 1)$. Moreover, G possesses the chief factors

$$q, \dots, q; p_1, \dots, p_1, \dots, p_r, \dots, p_r; q^{d_1}, \dots q^{d_k}.$$

in which $\sum_{i=1}^{k} d_i = \beta - \gamma$, $\gamma < d$, $d \mid d_i$, $i = 1, \dots, k$, and d is the exponent of $q \pmod{|H|}$.

Proof. I. If F is a Hall subgroup of G, then by Theorem 2, G = HF, H is a cyclic group or the direct product of a generalized quaternion group and a cyclic groupp of odd order. Since F is a nilpotent group, the Hall subgroups of F are normal in G, hence G has a chief series

$$G > \cdots > F > \cdots > C_{i} > 1$$

in which C_t is an elementary Abelian group of order $q_t^{b_t}$, and q_t can be any number among q_1 , ..., q_s . We conside the subgroup $G_t = HC_t$, where C_t is a minimal normal subgroup of G_t . If not, we assume $1 \neq C_n < C_t$, $C_n < C_t$, then by Z(F) < G, $1 \neq Z(F) \cap C_t \cap G$ we see that $C_t < Z(F)$, the reby $C_n < F$. Hence $C_n < C_t < C$

When H is a cyclic group, by Lemma 3, b_i is the exponent of $q_i(\text{mod} \mid \text{H} \mid)$. Considering the factor groups, by induction we see that G possesses the chief factors

$$p_1, ..., p_1, ..., p_r, ..., p_r; q_1^{b_1}, ..., q_1^{b_1}, ..., q_s^{b_1}, ..., q_s^{b_1},$$

in which $\omega_i b_i = \beta_i (i = 1, \dots, s)$ and the class of F is not more than $\sum_{i=1}^{n} \omega_i$

When H is the direct product of a generalized quaternion group and a cyclic group of odd order, then by Lemma 2, G has a normal 2--complement G_1 . Suppose P is a cyclic group of of order 2^{a_1-1} of the 2-sylow subgroup S_2 of G ($|S_2|=2^{a_1}$), $G_2=PG_1$, thus G has a normal series $G>G_2>G_1>F>1$.

Applying above discussion to G2, we conclude that G possesses the chief

factors

$$2, \cdots, 2; p_2, \cdots, p_2, \cdots, p_r, \cdots, p_r; q_1^{b_{11}}, \cdots, q_1^{b_{1}\omega_1}, \cdots, q_s^{b_{r1}}, \cdots, q_s^{b_{s\omega_r}}.$$

in which $b_i|b_{ij}$ $(j=1,\dots,\omega_i,\ i=1,\dots,s)$, b_i is the exponent of $q_i \pmod{H/2}$, $\sum_{j=1}^{\omega_i} b_{ij} = \beta_i \ (i=1,\dots,s)$, moreover, the class of F is not more than $\sum_{j=1}^{s} \omega_j$.

Now we prove $b_{ij} > 1$, it must only show $b_{s\omega_i} > 1$. Let C_i is a minimal normal subgroup of C_i , if $|C_i| = q$, we discuss S_2C_i , by Lemma 1, the centralizer of C_i in S_2C_i is itself. Also since the automorphism group of C_i is a cyclic group and S_2 is a generalized quaternion group, we see that this case can not happen.

[]. If F is not a Hall subgroup of G, by Theorem 2, we can assume that F is a q-group, Moreover by |P| = qr, we obtain that $qr | (p_1 - 1, \dots, p_r - 1)$. In this case G has a normal series

$$G = PHF > HF > F > 1$$
,

in which P and H are the cyclic groups of coprime orders, we refine it so as to obtain a chief series

$$G>\cdots>HF>\cdots>F>\cdots>C,>1$$
.

..., r. Therefore $q > p_h - 1 < p_h \le q^d - 1 < q^d$, hence y < d.

Its chief factors are $q, \dots, q; p_1, \dots, p_1, \dots, p_r, \dots, p_r; q^d, \dots, q^d$, in which $\sum_{i=1}^k d_i = \beta - \gamma$. Discussing the normal series of HF, since F is a normal Hall subgroup of HF, therefore the chief factors of HF are $p_1, \dots, p_1, \dots, p_r, \dots, p_r; q^d, \dots, q^d$, in which d is the exponent of $q \pmod{|H|}$. Hence we refine the normal series $HF > \dots > F > \dots > C_t > 1$ of HF so as to obtain a chief series, we obtain that $d \mid d_i$, $i = 1, \dots, k$. Since $q^r \mid (p_1 - 1, \dots, p_r - 1)$, also since the elements of L_h in semi-direct product L_hC_m (L_h is a subgroup of orden p_h of H; C_m is a minimal normal subgroup of HF) do not permute with the elements of C_m except 1, hence the normalizer of L_h in L_hC_m is itself, thus $1 + kp_k = |C_m| = q^d$, we conclude that $p_h \mid q^d - 1$, h = 1,

Theorem 4. A CN-group G is supersolvable if, and only if, $F \neq 1$ and there is a normal subgroup of order q in G, for all $q \mid |F|$, in which F is a Fitting subgroup of G.

Proof. It suffices to show sufficiency. If |F| is an even number, then by the hypothesis G has a normal subgroup of order 2, G possesses a central element of order 2, from G is a CN-group we see that G is a nilpotent group. Clearly G is supersolvable.

If |F| is an odd number, then by Theorem 2, G is solvable. Moreover since G has a normal subgroup Q of order q, for all q||F|, it lies in the center of the q-sylow subgroup Q_1 of G. Thus $C_G(Q) \ge Q_1$, but $C_G(Q)$ is a nilpotent normal subgroup of G, hence $F \ge C_G(Q) \ge Q_1$. Therefore F is a Hall subgroup of G. Since q is all a chief factor of G, for all q||F|, by the uniqueness of the chief factors and Theorem 3. I., we conclude that G possesses the chief factors $p_1, \dots, p_1, \dots, p_r, \dots, p_r$; $q_1, \dots, q_1, \dots, q_s, \dots, q_s$. G is a supersolvable group.

2. π - Separable $C\pi\pi$ - Groups

From the definition of $C_{\pi\pi}$ groups we see that G is a $C_{\pi\pi}$ -group if, and only if, G does not contain (π,π') -mixed elements, that is, the non identity element in G is either a π -element or a π' element. Thus, that G is a $C_{\pi\pi}$ -group but G is not a π -group is equal to that G is a C_{π} ' π' group but G is not a π' -group.

Lemma 4. Let G be a $C\pi\pi$ group, $A \subseteq G$, if G/A has a non-identity π -element, then G/A is a C $\pi\pi$ -group.

Proof. Since G is a $C\pi\pi$ -group, G has no (π,π') -mixed elements, this property is kept under the homomorphism. In fact, if G/A is not a $C\pi\pi$ group, since G/A has a non-identity π -element, G/A is not a π' -group, Then G/A has a (π,π') -mixed element \overline{g} . Suppose g is an inverse image of \overline{g} in G, since under the homomorphism |g| ||g|, we conclude that g is a (π,π') -mixed element, contrary to that G is a $C\pi\pi$ -group.

Lemma 5. If G is a $C_{\pi\pi}$ -group, G is not a π group, $1 \neq A \triangleleft G$ and then $C_G(A)$ is a nilpotent normal subgroup of G.

Proof. Since $C_G(A) \setminus N_G(A) = G$, if $C_G(A) = 1$, then the conclusion is obviously true. Thus we can assume $C_G(A) \neq 1$, by $C_G(A)$ is a $C_{\pi\pi}$ -group, G can only contain π -elements or π' -elements, thereby $C_G(A)$ is either a π -group or a π' -group. If $C_G(A)$ is a π -group, then since G is not a π -group, $C_G(A)$ admits a fixed-point-free automorphism of order G order G, by Thompson's theorem ([9] Theorem 12.9), $C_G(A)$ is a nilpotent group. If $C_G(A)$ is a π' -group, then since G is a $C_{\pi\pi}$ -group, $C_G(A)$ admits a fixed-point-free automorphism of order G, it is similarly nilpotent.

For convenience, we call the finite groups in which every Sylow subgroup is a cyclic group or a generalized quaternion group ZQ groups. Obviously, the subgroups of ZQ-groups are ZQ-groups.

Lemma 6. If ZQ group N is a characteristic simple group, then the order of N is a prime.

Proof. The characteristic simple group is the direct product of isomo rphic simple groups, its every direct factor is a simple ZQ-group, by (7), a simple ZQ-group is a group of prime order. Again because every Sylom subgroup of ZQ-groups—contains only a group of order p, we conclude that the order of N is a prime.

Theorem 5. Let G be a π separable group and let G be not a π -group; let F be a fitting subgroup of G. Thus

I. F is a non-identity π -group.

1. When F is a π' -Hall subgroup of G, G=HF, H is a ZQ-group. Moreover, G is a Frobenius group with Frobenius kernel F.

2. When F is not a π' -Hall subgroup of G, G = KHF, in whick K is a cyclic π' -group, H is a cyclic π group of odd order, $F = O_{\pi}(G)$. $|K| | (p_1 - 1, \dots, p_r - 1), p_1, \dots, p_r$ are all different prime factors of |H|. KH is a complementary group of F, moreover, it is a Frobenius group with Frobenius kernel H. HF $\leq G$, HF is a Frobenius group with Frobenius kernel

II. F is a non-identity π group. In this case we can suppose that H is a π' Hall subgroup of G. and we have the same conclusion to I (exchanging only π and π').

Proof. Since G is a π -separable $C_{\pi\pi}$ -group, and G is not a π -group, hence $O_{\pi}(G)$ or $O_{\pi'}(G)$ is not 1 and G. But since G is a π' -separable $C\pi'\pi'$ -group and G is not a π' -group, therefore [] and [have completely the same conclusion. we need only discuss the case of $O_{\pi'}(G) \neq 1$.

Since G is a $C_{\pi\pi}$ -group, $O_{\pi'}(G)$ admits a fixed point-free automorphism of order p $(p_{\epsilon\pi})$, by Thompson's theorem ([9]) Theorem 12.9) $O_{\pi'}(G)$ is a nilpotent group, hence $F = O_{\pi'}(G)$. If F is a π' -Hall subgroup, then G has π' -complement H, H is a π -Hall subgroup. It acts fixed-point-free on π' -group F. Hence H is a ZQ-group and case [-1], is true. Let F be not a π' -Hall subgroup, by the maximum property of F, $\overline{G} = G/F$ does not contain the normal π -subgroup, but \overline{G} is π -separable, it must contain a minimal normal π -subgroup \overline{P} , $\overline{P} = PF/F \cong P$. Since π -group P acts fixed-point free on π' -group F, \overline{P} is a ZQ-group. And by Lemma 6, \overline{P} is a group of order p $(p_{\epsilon\pi})$. Moreover, since \overline{G} is a $C_{\pi\pi}$ -group, hence $C_{\overline{G}}(\overline{P})$ does not contain π' -elements, it is a π -group. Furthermore, from F is not a π' -Hall subgroup of G, \overline{G} is not a π -group and

 $N_{\overline{G}}(\overline{P})/C_{\overline{G}}(\overline{P}) = \overline{G}/C_{\overline{G}}(\overline{P}) \approx (\text{the subgroup of Aut}(\overline{P}), \text{ i.e. the subgroup})$

of cyclic group of order p-1), we see that $\overline{G}/C_{\overline{G}}(\overline{P})$ can only contain π' elements and can't contain π -elements, therefore $\overline{G}/C_{\overline{G}}(\overline{P})$ is a cyclic π' -group. That is, $\overline{G}/C_{\overline{G}}(\overline{P})\cong \overline{L}$, in which \overline{L} is a π' -Hall subgroup of \overline{G} , moreover $|\overline{L}||p-1$. Also by Lemma 5, $C_{\overline{G}}(\overline{P})$ is a nilpotent normal subgroup of \overline{G} , hence $C_{\overline{G}}(\overline{G}) = F(\overline{G})$, and $\overline{G} = F(\overline{G})\overline{L}$. Since the inverse image of $F(\overline{G})$ in G has the normal Hall subgroup F, hence its complement H exist. Therefore, $F(\overline{G}) = HF/F \cong H$, H is a nilpotent π -group of ZQtype and HP $\leq G$. By Frattini's argument ([11] IV.2.e), we obtain G = $N_G(H)$ HF = $N_G(H)$ F, also since the non-identity elements between F and H do not permute, we conclude $N_G(H) \cap F = 1$. Let K be a π -complement of $N_G(H)$, thus $N_G(H) = KH$, G = KHF, and $K \cong \overline{L}$, K is a cyclic π' -group. Suppose p_1, \dots, p_r are all different prime factors of |H|, since $H \cong F(\overline{G}) \triangleleft$ \overline{G} , H is a nilpotent ZQ-group, we obtain that \overline{G} has the normal subgroup of order p_i $(i=1, \dots, r)$. Like the discussion of \overline{P} we can obtain |K| $(p_1 - 1, \dots, p_r - 1)$. Hence if H is a group of even order, then we have clearly that K=1, G=HF, F is a π' -Hall subgroup of G, contrary to hypothesis. Therefore, H is a cyclic \u03c4-group of odd order.

In this theorem the conclusions about Frobenius groups can immediately be obtained by the definition of $C_{\pi\pi}$ groups and [9] Theorem 10.5.

This theorem is a generalization of $\{1\}$ Theorem 1, $\{3\}$ II. Theorem 1, Theorem 2, the partial results of $\{6\}$ and $\{15\}$ Lemma 2.3.

From Theorem 5 we deduce easily the conclusion of (14) that if G is a solvable $C_{\pi\pi}$ -group; G is not a π group, then either a π -Hall subgroup or a π' -Hall subgroup of G is a nilpotent CCT-subgroup. Furthermore, we can generalize following corollary from this theorem.

Corollary 3. If G is a π -separable $C\pi\pi$ -group and G is not a π -group, then either a π -Hall subgroup or a π' -Hall subgroup of G is a nilpotent CCT-subgroup.

Proof. By Theorem 5, we need only conside this case in which F is a non-identity π' -group. When F is a π' -Hall subgroup of G, G=HF, where F is a Frobeniue kernel of G, by [9] Theorem 10.5.2) we see that F is a nilpotent CCT-subgroup. When F is not a π' -Hall subgroup of G, G=KHF, where the cyclic group H is a nilpotent π -Hall subgroup of G; moreover, H is a Frobenius kernel of KH and H is a Frobenius complement of HF. Let g be an element of G. Since g = khf, $k \in K$, $h \in H$, $f \in F$, $H^g = H \cap H^g = H \cap H^f = 1$ or H, that is, H is a TI-set. Moreover, since if the element $g \neq 1$ of G permute with the element $h_1 \neq 1$ of H,

then we can conclude $g = h\epsilon H$. Thus $C_G(h_1) \leq H$, $1 \neq h_1\epsilon H$, i.e. H is a CC subgroup. Therefore, in this case the π -Hall subgroup H is a nilpoten CCT-subgroup.

According to Theorem 5 and Lemma 3, we may discuss the chief factors of the solvable $C\pi\pi$ groups as we discuss the solvable CN-groups.

Theorem 6. Let G be a $C_{\pi\pi}$ -group and let G be not a π -group; let F be a Fitting subgroup of G. If G has a normal subgroup Q of order q, then G is solvable, and $F = C_G(Q)$, |G/F||q-1; G = HF, in which H is a cyclic Hall subgroup of G. If G has a normal subgroup of order q_i , for all $q_i \mid F$, then G is supersolvable.

Proof. Since $Q \leq G$, $Q \leq O_k(G)$, we obtain that $Q \subseteq Z(O_q(G))$, hence $Q \leq Z(F)$, thus $C_G(Q) \geq F$. Also by Lemma 5, $C_G(Q)$ is a nilpotent normal subgroup of G, from the maximum property of F, $C_G(Q) = F$. But since

 $G/F=N_G(Q)/C_G(Q)$ = the subgroup of cyclic group of order q-1, we obtain that G/F is solvable, deduce that G is solvable, and |G/F|/q-1. Since G is a $C_{\pi\pi}$ -group and G is not a π group, hence from G/F is an abelian group, we result in (|G/F|, |F|)=1. Thereby G=HF. H is a cyclic Hall subgroup of G.

If G has a normal subgroup Q_i of order q_i , for all $q_i \mid F \mid$, then from the discussion above we see that G is solvable, moreover $C_G(Q_i) = F$. Furthermore, G = HF, F is a Hall subgroup of G, and the complementary group H of F is cyclic. Like the case of Theorem 3. 1.1 completely, by Lemma 3 we can immediately conclude that the chief factors of G are $p_1, \dots, p_1, \dots, p_r, \dots, p_r, q_1^{b_1}, \dots q_1^{b_1}, \dots, q_s^{b_r}, \dots q_s^{b_r}$; in which $|H| = p_1^{a_1} \dots p_r^{a_r}, |F| = q_1^{b_1} \dots q_s^{b_s}$, b_i is the exponent of $q_i \pmod{|H|}$. Since q_i is all a chief factor of G, for all $q_i \mid F|$, by the uniqueness of the chief factors we see that G is supersolvable.

We see easily that the supersolvable conditions is this theorem are also necessary.

Acknowledgements

This paper is completed under Professor Chen Zongmu. We are most grateful to him for his instruction and help.

References

[1] Higman G., Finite groups in which every element has prime power order, J. London, Math. Soc., 32: 127 (1957), 335-342.

- Feit W., Hall M., Thempson J.G., Finite groups in which the centralizer of any non-identity element is nilpotent, Math. Z., 74 (1960), 1-17.
- 3 Suzuki M., Finite groups with nilpotent centralizers, Trans. Amer. Math. Soc., 99: 3 (1961), 425-470.
- (4) Arad Z., Chillage D., On centralizers of elements of odd order in finite groups, J.Algebra., 61 (1979), 269-280.
- (5) Arad Z., A classification of 3CC groups and application to Glauberman Gold schmidt theorem, J. Algebra., 43 (1976), 176-180.
- [6] Arad Z., Herzog M., On fundamental subgroups of order divisible by three, Houston J. Math., 3 (1977), 309 -313.
- (7) Brauer R., Suzuki M., On finite groups of even order whose 2 sylow groups is a quaternion group, Proc. Nat. Acad. Sci., 45 (1959), 1757-1759.
- (8) Burnside W., Theory of Groups of Finite Order, 2nd edition Cambridge 1911.
- [9] Kurzweil H., Endliche Gruppen, Springer-Verlag, Berlin-Heidelberg-New York.
- [10] Hall M., The Theory of Groups, The Macmillan Co., New York, 1959.
- (11) Schenkman E., Group Theory, D. Van Nostrand Co., Princeton, New Jersey, 1965.
- . (12) Jacobson N., Lectures in Abstract Algebra, Vol.2., New York, Van Nostrand Reinhold, 1956.
- [13] Gorenstein D., Finite Groups, Harper and Row, New York/London, 1968.
- [14] Arad z., Chillage D., Finite groups with conditions on the centralizer of π-elements, Comm. Algebra. 7 (1979), 1447-141468.
- [15] Williams J.S. A sufficient condition on centralizers for a finite group to conta in a proper CCT subgroup, J. Algebra, 42 (1976), 549 -556.
- (16) Gruenberg K.W., Roggenkamp K.W., Decomposition of the augmentation ideal and of the relation modules of a finite group, Proc. London, Math. Soc., 31 (1975), 149-166.