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G Higman studied f{irst the finite groups in which every element has pri-
me power order except 1(see(1]),that is,the centralizer of every element is
is a p-group except | Later manv authors have generalized it.Qn the one ha-
nd, the generalization is CN-groups, that is, the finite groups in which the cen-
tralizer of every element is nilpotent except 1(see[2,33)). On the other hand,
the generalization is C22-groups, that is, the groups are of even order and the
centralizer of any involution is a 2-group;a C22-group named again CIT-gro-
up(see(3]).(3)Jshowed that a nonsoivable CN-group and a nonslvable CIT gr-
oup are identical and classified such groups completely. About solvable CN-
groups( 2, 131have had a discussion. In recent years Z. Arad and other authors
generlized a C22-group to a Cpp-group G, i.e. the centralizer of any non-ide-
ntity p-element is a p-group for some prime pHGj.They further generlized to
a Crm-group, i.e. the centralizer of any non-identity m-element is a w-group
of G, in which 7 is a nonempty proper subset of all prime divisors of |G| .
About Cpp-groups(5,6]classified such groups completely for p=3. About Cnm-
groups( 14, 15, 16 Jhave had a discussion when it- is n -solvable.

The main content of this paper is to cqntinue a discussion of solvable
CN -groups and m-separable Cnn-groups. The results indicate that they possess
roughly the same structure, This paper apply mainly the theory of fixed-point-
free actions, thus the obtained results are more extensive and detailed than
predecessors. In addition, we have produced the sufficient and necessary cond-

ition which CN-groups and Crr-groups are either solvable or supersolvable.

|. Solvable CN-Groups

Lemmal). Let Gbe a CN-group, H, and H, be nilpotent subgroups of G,
('Hy|, |[H2|) =1. If there are 1%#x.¢H,.i=1i,2, satisfy x,x;= x,x;, then Hi and H:
ies scute elementwise,

This lemma is a generalization of (2]Lemma 2.3, Their proofs are all the
same. By Lemma |, the maximal nilpotent subgroups of G are Hall subgroups.

Lemma 2. Let G be a CN-group, if the 2-sylow subgroup of Gis a generalized
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quaternion group, then G has a normal 2-complement, thereby G is solvable.

Proof. Since the 2-sylow subgroups of G are generalized quaternion groups,
by[(7]G possesses a maximal odd normal subgroup G,. Thus it causes G/G:i to
have a central element a of order 2. But since Gi is an odd order group, it is
solvable. By (2] Lemma 1.5 we see that G/Gi is a CN-group, thus G/G=Cg g,
(a) is aanilpotent group. Furthermore, from the maximum property of G, we
see that G/Gi is a 2-group, hence G has a normal 2-complement G., therefo-
re G is solvable.

As pointed .out in the proof of (2)Lemma 1.8, Burnside s theoremon fixed-
point-free actions ((8], p336 TheoremV) is false in general, but it is true for
CN-groups.

Theorem | . Let CN-group H act fixed-point-free on a group K=, then H
is either a cyclic group or the direct product of a generalized quaternion gr-
oup and a cyclic group of odd order.

Proof. By[(9] Theorem 7,24, every sylowsubgroup of His a cyclic group or
a generalized quaternion group. When the 2-sylow subgroup S: of His cyclic,
then by Burnside's theorem ((10) Theoremi14.3.1), H has a normal 2-compleme
nt, therefore His solvable. When S: is a generalized quaternion group, also by
Lemma 2 His solvable. Thus H has a p, p,-Hall subgroup L for any pp,|/H].
Let p<p,.If p,, p,-sylowsubgroups are cyclic, then P:<{P/P:=L. Hence if ua 1s
an element of order p, of Pt and b is an element of order p, of P:, then L
has the subgroup <a, b)> of order p,p,, moreover {b)>-l <a,b>. If a and b do not
permute, since <(b)( 1K =1, then a does not permute with the elements of Kex
cept 1 either. Thus<{a)acts fixed-point-free on {»#)K, by Thompson's theorem
((93Theorem 12.9), {b>K is nilpotent, contrary to that {(b) acts fixed-point-free
on K Therefore a permutes with b, and by Lemma |, L=Pix P2, If Pi is a ge-
neralized quaternion group, then by Lemma 2 P:<{PiP:=L. Let g be an eleme
nt of order 2 of Pi, b be an element of order p, of B, Since P2is a cyclic group it
subgroups are characteristic subgroups. We see that (b)><(L and we obtain the
group <a)><{b> of order 2p. As the discussion above we conclude that « and b
permute, L = Py x P;. Hence the elements of Sylow subgroups of coprime orders
of H permute, Therefore H is nilpotent, and the theoremis proved.

Theorem 2. The Fitting subgroup F of CN-group G is either a Hall subg
roup of G or a p-group. If G is nonsolvable, then F=1 or F is a 2-group.

I. When F=1 is a Hall subgroup of G, then G=F or G=HF, HF=1 H
is a cyclic group or the direct product of a generalized quaternion group and
a cyclic group of odd order. Furthermore, G is a Frobenius group with Fro-

benius kernel F.



II. When G is solvable and F is not a Hall subgroup of G, then F is a
p-group, G=PHF, HF<G, in which P is a cyclic p-group; H is a cyclic p’ -
group. Furthermore, PH is a Frobenius group with Frobenius kernel H, HF is
a Frobenius group with Frobenius kernel F. Also if p;, p,,++, p, a all differ
ent prime factors of |H|, then |P||(p -1, py—1. eee, p,—1).

Proof. If F is not a p-group, let ¢,||F|, then |[F! possesses another prime
factor ¢, at least. We write Q;, Q: as q,, g,—sylow subgroups of Gseparately,
qu(G) for maximal normal g, —subgroup of G, D:Z(O‘b(G)). Since FIOql G)
XOq:(G)X ees. by Lemma 1. thus any element of Q; permute any element of
D, that is, Cq(D)>»>Q,. Moreover, since D is a characteristic subgroup of
Oqz(G)’ thus it is a characteristic subgroup F, we conclude that D<IG, hence
Ci(DH)<INg(D)=G. But since Gis a CN*group and Cs(D) is a nilpotent group,
D<{Z(F), we see that Cs(D)=F. Thus F>Q,, therefore F is a Hall subgroup
of G,

when F=1, if F is a Hall subgroup of G, and FzxG, since F<IG, then G
splits over F,i.e. G=HF, HM"F =1, and since C5(F) is a nilpotent normal su-
bgroup of G, C(F)<F, therefore F is a maximal nilpotent subgroup of G.
Hence the elements of H does not permute with the elements of F except 1,
i.e. Cq(y)<F, 1==yeF, therefore H acts fixed-point-free on F. From theorem [,
,H is either a cyclic group or the direct product of a generalized quaternion
group and a cyclic group of odd order, again by (9)Theorem 10.5, G is a Fr-
obenius group with Frobenius kernel F.In this case G is obviously solvable.
Suppose F is a p-group, as the proof above we show easily that any p-eleme-
nt and p -element do not permute. If p==2, then as Gis a group of even or-
der and 2-sylowsubgroup S: of G is a generalized quaternion group, by Lemma
mma 2, G is solvable. Suppose S; is not a generalized quaternion group, then
since S: acts fixed-point-free on F, we infer that S:;is a cyclic group. More-
over, by Burnside’ s theorem ({10} Theorem 14.3.1), G has a normal 2-comple-
ment , thus Gis solvable. Therefore, if G is nonsolvable, then F=1 or F is
a 2-group.

When G is solvable and F is not a Hall subgroup of G, we may assume
that F is a p-group. Let us write H as p-complement of G, H acts fixed- po-
int-free on F, by Theorem 1, His a cyclic grecup or the direct product of a
genc.oalized quaternion group and a cyclic group of odd order. Since F is a
maximal p-subgroup, the minimal normal subgroup P, of G/F is not a p-gr-
oup, we may assume that HF/F contins P,({10]Theorem 9.3.1), also since H

is nilpotent group, then HF/F< Cg¢(P,). But since G/F is a CN%-group, H is
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a maximal nilpotent subgroup of G, we conclude that HF/F is a maximal nik

nilpotent subgroup of G/F, therefore.

Co/p(P,) = HF/F<INg,r(P,) =G/F
Thus HF<JG. Since His a cyclic group or the direct product of a generalized
quaternion group and a cyclic group of odd order, also since P, is contained
in HF/F, and HF/F=H, hence P, is a group of prime order. |P;|= pl|H|, but

G/F  N., (P,
G/HF o= —L—_ "/ ri’ T _
HF/F Co/n(P)) =z=a subgroup of a cyclic group of order p -1,

we conclude that G/HF is a cyclic p-group. Furthermore , EG/‘.HFH([;, ~1.p,-

Loeesyp =15, in which p, p, e p  are different prime factore of |HF/F|=|H]|.
Since G/HF is a cyclic p-group, from pA(p —1,%,p ~-1) we see that p is the
minimal prime factor of |G|, thus H is a group of odd order, it must be a
cyclic p’-group. As the reason above, HF is a Frobenius group with Froben-
ius kernel F. Since HF is a solvable normal subgroup of G, His a Hall su-
bgroup of HF, by Frattini's argument ( (11)Proposition IV. 2.e), G = Ng(HYHF =
Ng(H)F. Also from Ng(HYF<INj(H), we obtain that the elements of N;(H)

~

MF permute with the elements of H, hence Ng(H)WF=1., Let Pis a p-sylow
subgroup of Ng(H), thus N (H) = PH, G= PHF. PzzPH/’H;Ji}-{*iFE—?E-;PHF,«’HF:
G/HF, P is a cyclic greup. Since the p-elements and p» -elements of G do

not permute, hence PH is a Frobenius group with Frobenius kernel H.

This theoremis a generalization of {{ YTheorem 1, {2 Lemmal.&, {13 p4102,
Theorem 1.5,

Corollary !. If Gis a 3-step greup, then G=PHF, in which the meanin-
gs of P,H, F is stated 1n Theorem 2.11.

Proof. Fom {137 p401.Lemma 1.4,any 3-step group is a solvable CN-group,
Again by Theorem 2, this completes the proof.

Corollary 2. CN-group G is solvable if, and only if,Ghas a 2-compleme-
nt and the Fitting subgroup F=£=1 of G.

Proof. It suffices to show sufficiency. Moreover, by Theorem 2. we need
only show when F is a 2-group. Since C,(F) is a niipotent normal subgroup
of G, C4(FY<'F, hence a 2-complement H in Gacis f{ixed-poini-free on F. By
Theorem 1, His a cyclic group and G=HS,, in which S; is a 2-sylow subgroup
of G. By Wielandt-Kegel's theorem ([1131X. 2.¢), G is a solvable group.

To further understand the construction of the solvable CN-groups, first ws
give the following lemma.

Lemma 3. let group G=PQ.in which Pis a cyclic group, Q is a minimal
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normal subgroup of G, and Q is a sylow subgroup of G. If C,(Q)=Q,
| Q I:qﬂ, then p is the exponent of g(mod|P}).

Proof. Since Q is an elementary Abelian group of order ¢#, and G=PQ,
from Q is a minimal normal subgroup of G we see that Q is also a mini-
mai P invariant subgroup of G. Whence p: P>GL (Q)i1s an irreducible repre-
sentation (GL (Q) is an automorphism group of Q, it is a full linear group).
By C,(Q) = Q we see that the representation is faithful, Let P= {(a), then
the vector space Q does not contain a proper p (a) invariant subspace, Othe
rwise it is contrary to that Q is an irreducible P module. Let the matrix cor-
responding p(a) be A on a certain basis of Q, then by{ 12} Chapter 3,
Therem 2 we sec that the characteristic polynmial of A is a minimal poly
nomial ., Also if the order of A is m, then A" =1, that is, the characteristic
polynomial of A divides exactly x™—-1, Hence the characteristic roots of A
are all unit roots of deéree m on a certain finite extension field K (g") of a
q element field C,, moreover, there is not a repeated root, Thus if f(x)
(mod q) could be reduced, f(x)=/f,(x)f,(x), we would prove easily that

A, )
s~ (
Az

on C in which A,, A, are respectively take f, (x),f,(x) as a characteri

DI
stic polynomial . Since A is irreducible, therefore f(x)(mod q) is also irred-
ucible,

Let 4eK ("), f(w)=90, thus the number of the conjugate of o is identi-
cal with the degree g of f(x). Suppose ¢ is a generator of K (q"), thus
;a—»g‘" generates the automorphism group of K(q"), Under this automorphism,

w>w?. As the order of A is m, the order of » is also m, m=|P|. Hence

the all conjugates of w are o', w4',++, ©? ', in which y is the exponent
of g (mod|P
Theorem 3. Lei G be a solvable CN-group, and let G be not nilpot-

), therefore B=p» and the lemma is proved.

ent; let F be the Fitting subgroup of G.
I. If F is a Hall subgioup of G, then G=HF, H"F=1. Let H=p/.

Pl F:q)/’l.uqsﬁx .
1. When H is a cyclic group, then G possesses the chief factors

b b h h
Precte Dys*®s Dps o5 Dy Griac gy g yidte
S— - —~—— U, - ~— oy Ml W,

in which b, is ‘the exponent of ¢g,(mod |H, ob, =8, =1,>+,8). Moreo
s

ver the class of F is not more that Yoo .
il

2 . When H is the direct product of a generalized quaternion group and
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a cyclic group of odd order, then (G possesses the chief factors

h hw
2, ooy 2 Pra s Pae sy Doy u Dyt g,y oo, qll '

N—a, Nl v N~ w2

bs how
’ -..’ q.t « --n‘ (]3’ .

¢

in which b,|b,, b, is the exponent of g, (modiH 20, L b, = Biv by, 1
FEn

S
(I =1, *,5,j=1, *+, ;). Moreover, the class of F is not more than X‘“i .
i=

M. If Fis not a Hall subgroup of G, then G=PHF, Let |Pi=g», |H|=
pireps, |Fl=q?/ *, Oy~ 5, we have g7 |(p, = 1., p, —1). Moreover, G

possesses the chief factors

d, ***, g5 D LLXIN 7} ore vee )5 d.\ ceey 4,
’ ’ . 1 . i vl"r . sl dq . .

el g N~ vy el
k
in which Y d,=p-y, y<d, d|d,, i=1, «, k. and d is the exponent of
i =1
g (mod|H .
Proof. | . If F is a FEail szubgroup of G, then by Theorem 2, G=HF, H

is a cyclic group or the direst wroduct of a generalized quaternion group

and a cyclic groupp of odd order, Since F is a nilpotent group, the Hall
subgroups of F are normal! in G, hence G has a chief series
G e >F >eee >C, 201,

in which C, is an elementary Abelian group of order ¢/, and ¢, can be
any number among g,, -+, g, . We conside the subgroup G,=HC,, where C,
is a minimal normal s subgroup of G,. If not, we assume 1 #C_, <C,,
C,qC,, then by ZFE<G, 1+Z(F)(C, G we see that C,<Z (F), the
reby C,-.F. Hence C, - '(HC,, F)=HF =G, contrary to that C, is a mini-
mal normal subgroup of G.

When H is a cyclic group, by Lemma 3, b; is t the exponent of
g;(mod|H |). Considering the factor groups , by induction we see that G
possesses the chief factors

b b, .
p]’."’pl"“’pr’.."pr; q\l".'.’ql" -o-,q.‘ 7.“7q5 N

S U ~d, - O ~——

in which b, = ,(i=1,»+,5) and the class of F is not more than Z ;
co

When H is the direct product of a generalized quaternion group and a
cyclic group of odd order, then by Lemma 2, G has a normal 2--comple-

ment G,. Suppose P is a cyclic group of of order 2% ' of the 2-—sylow
subgroup S, of G (S, |=2°), G,=PG,, thus G has a normal series
G>G, >G, >F>1.

Applying above discussion to G,, we conclude that G possesses the chief

—— 10 ——
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factors

bsw,

1@ b
s gty g .

« b b
2, **, 2;p<"'9 Das **79 Prs*y {’r;q]”’ 0 q
1

N g — [rppe—g ~

in which b,{b,-_, =1, w;s { =1,>,5), b, is the exponent of q,.(modjﬂ/zl),

w, ;
Y. bi=bi<i=1,-,5), moreover, the class of F is not more than Y .
7 i=1

Now we prove b, >1, it must only show bm'>1. Let C, is a minimal
normal subgroup of G, if |C, =g, we discuss S,C,, by Lemma |, the
centralizer of C, in S,C, is itself. Also since the automorphism group of
C, is a cyclic group and S, is a generalized quaternion group, we see that
this case can not happen.
I.If F is not a Hall subgroup of G, by Theorem 2, we can assu-

me that F is a q-group, Moreover by |P |=qr, we obtain that qr| (p - 1,
s, p,- 1), In this case G has a normal series

G = PHF »>HF >F >1, _
in which P and H are tﬁe cyclic groups of coprime orders, we refine
it so as to obtain a chief series

G > >HF > oo >F >0 >C, > 1, .

Its chief factors are g, oo, G5 pyy "Dy 5% Dry* p,;qd', «>,q% in which Z
S a,~ N der =t

d,=f-y. Discussing the normal series of HF, since F is a normal
fall subgroup of HF, therefore the chief factors of HF are p,,e,p,

e A -

Pre*sD,3qdy+,qd, in which 4 is the exponent of ¢ {mod|H|). Hence
.

we refine the normal series HF > «.>>F >« >C, >1 of HF so as to obtain
a chief series, we obtain that d (d,, i =1, ee,k. Since g7 {(p; 1, >+ p,- 1),
also since the elements of L, in semi-direct product L,C, (L, is a subgr-
oup of orden p, of H; C, is a minimal normal subgroup of HF) do not
permute with the elements of C, except 1, hence the normalizer of L, in
L,C, is itself, thus 1+kp,=]C, |{=q’, we conclude that p,|q?- 1, h=1,
e, r, Therefore q»<<p,- 1<p,<q®- 1<q?, hence p<d.

Theorem 4. A CN-group G is supersolvable if, and only if, F-t1 and
there is a normal subgroup of order q in G, for all g]|F |, in which F is
a Fitting subgroup of G.

. Proof. It suffices to show sufficiency. If |F| is an even number,
then by the hypothesis G has a normal subgroup of order 2, G possesses
a central element of order 2,'frbm G is a CN-grouip we see that G is

a nilpotent group. Clearly G is supersolvable .

—_ IL _
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If |F| isan odd number, then by Theorem 2, G is solvable. Moreov-
er since G has a normal subgroup Q of order q, for all al/F |, it lies
in the center of the qg-sylow subgroup Q, of G. Thus CQ) >, but
C,(Q is a nilpotent normal subgroup of G, hence F>C,(Q) >Q, .
Therefore F is a Hall subgroup of G, Since ¢ is all a chief factor of G,
for all g| |F|, by the uniquéness of. the chief factors and Theoram 3.

I., we conclude that G possesses the chief factors p;, <o, py oo, g0 ps
Ml T e

Gy di g, »+q,. G i35 « supersolvable group.
~ B e -—

2. mn-Separable Crrx-Groups

From the definition of Czgx groups we see that G 1= a Cangroup if,
and only if, G does not coniain (r, 7’ )-mixed elements, that is, the non
identity element in G is eiihce 2  -element or a 7’ element. Thus, that
G 1s a Crr-group but G is not a w-group is equal to that G is A Cr'n’
group but G is not a 7’ rgl:oup.

Lemma 4. Let G be a Cgxr group, A-JG, if G/A has a non-identity
t-element, then G/A is a C nn-group,

Proof. Since G is a Cnr group, G has no (n,n ) mixed elements,
this property is kept under the homomorphism. In fact, if G/A is not a
Cnm group, since G/A has a non-identity g-clement, G A is not a n
group, Then G/A has a (x,x) mixed clement &, Suppose g is an inverse
image of & in G, since under the homomorphisn fglilel, we conclude
that ¢ is a (w,n ) -mixed element, contrary to that G is a Cgx-group.

.Lemma 5. If G is a Cuar-group, G is not a m group, 1 #A 1G and
then 'CG(A) is a nilpotent normal subgroup of G,

Proof. Since CiA)Y N HA) =G, if CiA) =1, then the conclusion is
obviously true. Thus we can assume C,(A) =1, by CxiA is a Crm-group,
G can only contain n-elements or ﬂ" -elements, thereby C{A) is either a
n»grouq or a g -group. If Cg(A) is a m-group, then since G is not a
7-group, C,;(A) admits a fixed- point - free automorphism of order q (gex’ ),
by Thompson’s theorem ([ 9J Theorem 12.9), C (A) is a nilpotent group.
If C,(A) is a n -group, then since G is a Can-group, Cgx(A) admits a
fixed- point - free automorphism of order p (pemw), it is similarly nilpotent,

For convenience, we call the finite groups in which every
Sylow subgroup is a cyclic group or a generalized quaternion group ZQ-
groups . Obvionsly, the subgroups of ZQ-groups are ZQ-groups,
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Lemma 6. If ZQ group N is a characteristic simple group, then the
order of N is a prime,

Proof . The characteristic simple group is the direct product of isomo
rphic simple groups, its everv direct factor is a simple ZQ-group, by
73, a simple ZQ-group is a group of prime order. Again because every
Sylom subgroup of ZQ-groups contains only a group of order p, we conc-
fude that the order of N is a prime.

Theorem 5. Let G be a i separable group and let G be not a -
group; let F be a [fitting subgroup of G. Thus

1.F is a non-identity n - gioup.

1.When F is a 7/ -Hall subgroup of G, G-HF, H is a ZQ- group.
Moreover, G is a Frobenius group with Frobenius kernel F,

2.When F is not a ' - Hall subgroup of G, G=KHF, in whick K is a
cyclic n” ~group, H is a cyclic n-group of odd order, F=0_ (G). |K||
(py = Ly*ss, p, = 1), py.+= p, are all different prime factors of |H|. KH is
a complemen'ta‘ry group of F, moreover, it is a Frobenius group with_Frobe-
nius kernel H. HF<G, HF is a Frobenius group with Frobenius kernel
F. or '

. F is a non-identity ¢ -group. In this case we can suppbse that H
is a n' Hall subgrou'p of G, and we have the same conclusion to [
(exchanging only mandzn .

Proof. Since G is a m-separable Cgx-group, and G is not a x-group,
hence: O, (G) or O _(G) is not | and G. But since G is a n’ -separable
Cr'n’ -group and G is not a x -group, therefore || and | have complete-
ly the same conclusion. we need only discuss the case of O _(G) 1.

Si‘nce G is a Cnnvg;oup. 0, (G) admiis a fixed- point -free automorphism
of order p (pex), by Thompson’s theorem ([ 9 ) Theorem 12.9) 0.(G) is
a nilpotent group, hence F=G _(G). If F is'a 7 -Hall subgroup, » then G
has 7' complement H, H is a g~ Hall subgroup. It acts fixed-point -free on
7 -group F. Hence H is a ZQfgro‘up and case i. 1, is true, Let F be not
a 7 -Hall subgroup,‘ by the maximum property of F, G =G/F,does not con-
tain the normal. yx subgroup, but G is m-separable, it must contain a mini

" mal normal g subgroup P, F:PF',»’”F:Z{P. Since n-group P acts fixed- point -
free on = -group F, P is a ZQ-group. And by Lemma &6, - P is a group of
order p (pen). Moreover, since G is a Cmm-group, hence Cé-(ﬁ) does not
" _contain 1’ -elements, it is alqrgroup,. Furthermore, from F is not a ' ~Hall
subgroup of G, G is not a g-group and ' . .

‘N,G,(_};),V'CG,(F'_):—G,,’CC(F)guhesubgroup of Aut(F), i.e. the subgroup

L— 13—
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of cyclic group of order p-1), we see that E}—/CE(F) can only conwin

n’ - elements and can’t contain r-elements, therefore G,/C (P) is a cyclic
' -group, That is, _(—‘;/CE(F) =L, in which T is a 7 “Hall subgroup of
G, moreover |L ||p-1. Also by Lemma 5, Cé(p) is a nilpotent normal

subgroup of G, hence Ca(a)zF(E}_), and G =F(G)L. Since the inverse
image of F(G) in G has the normal Hall subgroup F, hence its compleme-
nt H exist, Therefore, F(G)=HF,/F~H, H is a nilpotent n-group of ZQ
type and HP<{ G, By Frmttini’s argument ([11] IV.2.e), we obtain G=
NqH) HF =Ng(H) F, also since the non-identity elements between F and

H do not permute, we conclude NgH) MF =1, Let K be a n-compiement
of NgiH)Y, thus NgH)=KH, G=KHF, and K=1. K is a cyclic z  -group.
Suppose p,, = p, are all different prime factors of |H |, since HzF (G <
G, H is a nilpotent ZQ-group, we obtain that Ehas the normal subgroup
of order p, (i=1, «,r). Like the discussion of P we can obtain |K ||
(p, 1, *,p, - 1), Hence if H is a group of even order, then we have
clearly that K=1, G=HF, F is a 7 -Hall subgiroup of G, contrary to
hypothesis, Therefore, H is a cyclic n-group of odd order.

In this theorem the conclusions about Frobenius groups can inmediately
be obtained by the definition of Cxxr groups and [ 9] Theorem 10.5.

This theorem is a generalization of {13 Theorem 1, (3] JI. Theorem
1, Theorem 2, the partial results of 6 1 and {15 Lemma 2.3.

From Theorem 5 we deduce easily the conclusion of [147] that if G
is a solvable Cgnr-group; G is not a x group, then either a n-Hall subgro-
up or a ' -Hall subgroup of ( is a nilpotent CCT-subgroup. Furthermore,
we can generalize following corollary from this the'orem.

Corollary 3. If G is a jy-separable Crn-group and G is not a m-group,
then either a y-Hall subgroup or a n' -Hall subgroup of G is a nilpotent
CCT- subgroup.

Proof . By Theorem 5, we need only conside this case in which F 15
a non-identity 1’ -group. When F is a =’ -Hall subgroup of G, G=HF,
where F is a Frobeniue kernel of G, by (9] Theorem 10.5.2) we see that
F is a nilpotent CCT-subgroup. When F is not a g - Hall subgroup of G,
G =KHF, where the cyclic group H is a nilpotent gx-Hall subgroup of G;
moreover, H is a Frobenius kernel of KH and H is a Frobenius compleme
nt of HF, let g be an element of G. Since g=khf, keK, heH, feF,
Hf=H’/, hence HNH¢*=H(H’/=1 or H, that is, H is a TI-set. Moreover,
sincg if the element g=+1 of G permute with the element h 1 of H,

J— 14 —



then we can conclude g=heH, Thus Cg(h))<H, 1#heH,1.e.His aCC subg:
roup. Therefore, in this case the w-Hall subgroup H is a nilpoten CCT-
subgroup,

According to Theorem 5 and Lemma 3, we may discuss the chief fa-
ctors of the solvable Cxn groups as we discuss the solvable CN-groups.

Theorem 6. Let G be a Crn-group and let G be not a 7 -group; let
F be a Fitting subgroup of G. If G has a normal subgroup Q of order q,
then G is solvable, and F=C4Q), | G/F|lg-1; G=HF, in which H is
a cyclic Hall subgroup of G. If G has a normal subgroup of order g¢,, for
all ¢,} |F |, then G is supersolvable.

Proof. Since Q:_G, Q./0,(G). we obtain that Q-.Z (0, (G)), hence
Q<Z (F), thus Cg4(Q) >F. Also by Lemma 3, C4Q) is a nilpotent normal
subgroup of G, from the maximum property of F, C5Q) =F. But since

G/F=NgQ)/CsQ) =the subgroup of cyclic group of order q-1, we
obtain that G.F is solvable, deduce that G is solvable, and {G/F | |q-1.
Since G is a Cgy -group and G is not a 7w group, hence from G F is an
abelian group, we result in (G Fi fF{) =1, Thereby G -=HF. H is a
cyclic Hall subgroup of G.

If G has a normal subgroup Q; of order ¢,. for all q,} {F!, then from
the discussion above we see that G is solvable. moreover C4Q,) =F.
Furthermore, G=HF, F is a Hall subgroup of G, and the complementary
group H of F is cyclic, Like the case of Theorem 3. | .! completely, by

-Lemma 3 we can immediately conclude that tht chief factors of G are

b, b, L b b : : ; [T «, i .
Prov sy Pyy oo Py ey Py Ay ooed )y se G0 eq s in which T H f=pyeeep, |F =
\-u,/ \4/’-/ \ p’l-/ N b=

qxﬁ‘-'-qf , b, is the exponent of 4 ,(mod [H). Since ¢, is all a chief
factor of G. for all ¢ | Fi, by the uniqueness of the chief factors we

see that G is supersolvable.
We see easily that the supersolvable conditions is this theorem are also

necessary.
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