Solvable CN-Groups and π -Separable $C\pi\pi$ -Groups* Shi Wujie (施武杰) Yang Wenze (杨文泽) (Southwest Normal University) G. Higman studied first the finite groups in which every element has prime power order except 1(see[1]), that is, the centralizer of every element is is a p-group except 1. Later many authors have generalized it. On the one hand, the generalization is CN-groups, that is, the finite groups in which the centralizer of every element is nilpotent except 1(see[2,3]). On the other hand, the generalization is C22-groups, that is, the groups are of even order and the centralizer of any involution is a 2-group; a C22-group named again CIT-group(see[3]).[3]showed that a nonsolvable CN-group and a nonslyable CIT group are identical and classified such groups completely. About solvable CNgroups(2,13) have had a discussion. In recent years Z. Arad and other authors generlized a C22-group to a Cpp-group G, i.e. the centralizer of any non-identity p-element is a p-group for some prime p||G|. They further generalized to a $C\pi\pi$ -group, i.e. the centralizer of any non-identity π -element is a π -group of G, in which π is a nonempty proper subset of all prime divisors of |G|. About Cpp-groups [5,6] classified such groups completely for p=3. About $C\pi\pi$ groups (14, 15, 16) have had a discussion when it is π -solvable. The main content of this paper is to continue a discussion of solvable CN-groups and π -separable $C\pi\pi$ -groups. The results indicate that they possess roughly the same structure. This paper apply mainly the theory of fixed-point-free actions, thus the obtained results are more extensive and detailed than predecessors. In addition, we have produced the sufficient and necessary condition which CN-groups and $C\pi\pi$ -groups are either solvable or supersolvable. ### I. Solvable CN-Groups **Lemma 1.** Let G be a CN-group, H_1 and H_2 be nilpotent subgroups of G_1 $(|H_1|, |H_2|) = 1$. If there are $1 \neq x_1 \in H_{1/2}$ i = 1, 2, satisfy $x_1x_2 = x_2x_1$, then H_1 and H_2 green state elementwise. This lemma is a generalization of [2] Lemma 2.3. Their proofs are all the same. By Lemma 1, the maximal nilpotent subgroups of G are Hall subgroups. Lemma 2. Let G be a CN-group, if the 2-sylow subgroup of G is a generalized ^{*} Received Mar. 10, 1984. quaternion group, then G has a normal 2-complement, thereby G is solvable. **Proof.** Since the 2-sylow subgroups of G are generalized quaternion groups, by [7] G possesses a maximal odd normal subgroup G_1 . Thus it causes G/G_1 to have a central element a of order 2. But since G_1 is an odd order group, it is solvable. By [2] Lemma 1.5 we see that G/G_1 is a CN-group, thus $G/G_1 = C_{G/G_1}$ (a) is an anilpotent group. Furthermore, from the maximum property of G_1 we see that G/G_1 is a 2-group, hence G has a normal 2-complement G_1 , therefore G is solvable. As pointed out in the proof of (2) Lemma 1.8, Burnside's theorem on fixed-point-free actions ((8), p336 TheoremV) is false in general, but it is true for CN-groups. **Theorem !**. Let CN-group H act fixed-point-free on a group $K \neq 1$, then H is either a cyclic group or the direct product of a generalized quaternion group and a cyclic group of odd order. **Proof.** By [9] Theorem 7.24, every sylow subgroup of H is a cyclic group or a generalized quaternion group. When the 2-sylow subgroup S2 of H is cyclic, then by Burnside's theorem ([10] Theorem 14.3.1), H has a normal 2-compleme nt, therefore H is solvable. When S2 is a generalized quaternion group, also by Lemma 2 H is solvable. Thus H has a $p_1 p_2$ -Hall subgroup L for any $p_1 p_2 ||H|$. Let $p_1 < p_2$. If p_1, p_2 -sylow subgroups are cyclic, then $P_2 < P_1 P_2 = L$. Hence if a is an element of order p_1 of P_1 and p_2 is an element of order p_2 of P_2 , then Lhas the subgroup $\langle a,b\rangle$ of order p_1p_2 , moreover $\langle b\rangle \triangleleft \langle a,b\rangle$. If a and b do not permute, since $\langle b \rangle \cap K = 1$, then a does not permute with the elements of K ex cept 1 either. Thus $\langle a \rangle$ acts fixed-point-free on $\langle b \rangle$ K, by Thompson's theorem ([9]Theorem 12.9), $\langle b \rangle K$ is nilpotent, contrary to that $\langle b \rangle$ acts fixed-point-free on K. Therefore a permutes with b, and by Lemma 1, $L = P_1 \times P_2$. If P_1 is a generalized quaternion group, then by Lemma 2 $P_2 \le P_1 P_2 = L$. Let a be an eleme nt of order 2 of P_1 , b be an element of order p_2 of P_2 . Since P_2 is a cyclic group, its subgroups are characteristic subgroups. We see that $\langle b \rangle \subset L$ and we obtain the group $\langle a \rangle \langle b \rangle$ of order 2p. As the discussion above we conclude that a and b permute, $L = P_1 \times P_2$. Hence the elements of Sylow subgroups of coprime orders of H permute. Therefore H is nilpotent, and the theorem is proved. **Theorem 2.** The Fitting subgroup F of CN-group G is either a Hall subgroup of G or a p-group. If G is nonsolvable, then F=1 or F is a 2-group. I. When $F \neq 1$ is a Hall subgroup of G, then G = F or G = HF, $H \cap F = 1$. H is a cyclic group or the direct product of a generalized quaternion group and a cyclic group of odd order. Furthermore, G is a Frobenius group with Frobenius kernel F. II. When G is solvable and F is not a Hall subgroup of G, then F is a p-group, G = PHF, $HF \triangleleft G$, in which P is a cyclic p-group; H is a cyclic p'-group. Furthermore, PH is a Frobenius group with Frobenius kernel H, HF is a Frobenius group with Frobenius kernel F. Also if p_1, p_2, \dots, p_r a all differ ent prime factors of |H|, then $|P||(p_1-1, p_2-1, \dots, p_r-1)$. **Proof.** If F is not a p-group, let $q_1||F|$, then |F| possesses another prime factor q_2 at least. We write Q_1 , Q_2 as q_1 , q_2 -sylow subgroups of G separately, $Q_{q_1}(G)$ for maximal normal q_i -subgroup of G, $D=Z(O_{q_2}(G))$. Since $F=O_{q_1}(G)\times O_{q_2}(G)\times \cdots$, by Lemma 1, thus any element of Q_1 permute any element of D, that is, $C_G(D)>Q_1$. Moreover, since D is a characteristic subgroup of $O_{q_2}(G)$, thus it is a characteristic subgroup F, we conclude that D<|G|, hence $C_G(D)<|N_G(D)|=G$. But since G is a $C:N^*$ -group and $C_G(D)$ is a nilpotent group, D<|Z|, we see that $C_G(D)=|F|$. Thus $F>Q_1$, therefore F is a Hall subgroup of G. when $F \neq 1$, if F is a Hall subgroup of G, and $F \neq G$, since $F \triangleleft G$, then G splits over F, i. e. G = HF, $H \cap F = 1$, and since $C_G(F)$ is a nilpotent normal subgroup of G, $C_G(F) < F$, therefore F is a maximal nilpotent subgroup of G. Hence the elements of H does not permute with the elements of F except 1, i.e. $C_G(y) < F$, $1 = y \in F$, therefore H acts fixed-point-free on F. From theorem 1, H is either a cyclic group or the direct product of a generalized quaternion group and a cyclic group of odd order, again by [9] Theorem 10.5, G is a Frobenius group with Frobenius kernel F. In this case G is obviously solvable. Suppose F is a p-group, as the proof above we show easily that any p-element and p'-element do not permute. If $p \neq 2$, then as G is a group of even order and 2-sylow subgroup S2 of G is a generalized quaternion group, by Lemma mma 2, G is solvable. Suppose S2 is not a generalized quaternion group, then since S_2 acts fixed-point-free on F, we infer that S_2 is a cyclic group. Moreover, by Burnside's theorem ([10] Theorem 14.3.1), G has a normal 2-complement, thus Gis solvable. Therefore, if G is nonsolvable, then F=1 or F is a 2-group. When G is solvable and F is not a Hall subgroup of G, we may assume that F is a p-group. Let us write H as p-complement of G, H acts fixed point-free on F, by Theorem I. H is a cyclic group or the direct product of a generalized quaternion group and a cyclic group of odd order. Since F is a maximal p-subgroup, the minimal normal subgroup $\overline{P_i}$ of G/F is not a p-group, we may assume that HF/F contains $\overline{P_i}(\{10\}]$ Theorem 9.3.1), also since H is nilpotent group, then HF/F $\leq C_{G/F}(\overline{P_i})$. But since G/F is a CN*-group, H is a maximal nilpotent subgroup of G, we conclude that HF/F is a maximal nilpotent subgroup of G/F, therefore. $$C_{G/F}(\overline{P}_i) = HF/F < N_{G/F}(\overline{P}_i) = G/F$$ Thus HF \triangleleft G. Since H is a cyclic group or the direct product of a generalized quaternion group and a cyclic group of odd order, also since \overline{P}_i is contained in HF/F, and HF/F \cong H, hence \overline{P}_i is a group of prime order. $|\overline{P}_i| = p_i ||H|$, but $$G/HF \cong \frac{G/F}{HF/F} = \frac{N_{G/F}(\overline{P}_i)}{C_{G/F}(\overline{P}_i)} \cong \text{a subgroup of a cyclic group of order } p_i - 1,$$ we conclude that G/HF is a cyclic p-group. Furthermore, $|G/HF||(p_1-1,p_2-1,\cdots,p_r-1)$, in which p_1,p_2,\cdots,p_r are different prime factors of |HF/F|=|H|. Since G/HF is a cyclic p-group, from $p|(p_1-1,\cdots,p_r-1)$ we see that p is the minimal prime factor of |G|, thus H is a group of odd order, it must be a cyclic p'-group. As the reason above, HF is a Frobenius group with Frobenius kernel F. Since HF is a solvable normal subgroup of G, H is a Hall subgroup of HF, by Frattini's argument ([11]) Proposition IV. 2.e), $G = N_G(H)HF = N_G(H)F$. Also from $N_G(H) \cap F \triangleleft N_G(H)$, we obtain that the elements of $N_G(H) \cap F \triangleleft N_G(H)$ we obtain that the elements of $N_G(H) \cap F \triangleleft N_G(H)$ we subgroup of $N_G(H)$, thus $N_G(H) = PH$, G = PHF, $P \cong PH/H \cong PHF/F \cong PHF/HF = G/HF$, P is a cyclic group. Since the p-elements and p'-elements of G do not permute, hence PH is a Frobenius group with Frobenius kernel H. This theorem is a generalization of (1) Theorem 1, (2) Lemma 1.8, (13) p402, Theorem 1.5. Corollary 1. If G is a 3-step group, then G = PHF, in which the meanings of P, H, F is stated in Theorem 2. II. **Proof.** From [13] p401, Lemma 1.4, any 3-step group is a solvable CN-group, Again by Theorem 2, this completes the proof. Corollary 2. CN-group G is solvable if, and only if, G has a 2-complement and the Fitting subgroup $F \neq 1$ of G. **Proof.** It suffices to show sufficiency. Moreover, by Theorem 2, we need only show when F is a 2-group. Since $C_G(F)$ is a nilpotent normal subgroup of G, $C_G(F) \leq F$, hence a 2-complement H in G acts fixed-point-free on F. By Theorem 1. H is a cyclic group and $G = HS_2$, in which S_2 is a 2-sylow subgroup of G. By Wielandt-Kegel's theorem ([11] IX, 2.e), G is a solvable group. To further understand the construction of the solvable CN-groups, first ws give the following lemma. Lemma 3. Let group G = PQ, in which P is a cyclic group, Q is a minimal normal subgroup of G, and Q is a sylow subgroup of G. If $C_G(Q) = Q$, $|Q| = q\beta$, then β is the exponent of $q \pmod{|P|}$. **Proof.** Since Q is an elementary Abelian group of order $q\beta$, and G = PQ, from Q is a minimal normal subgroup of G we see that Q is also a minimal P-invariant subgroup of G. Whence $\rho: P \rightarrow GL(Q)$ is an irreducible representation (GL(Q) is an automorphism group of Q, it is a full linear group). By $C_G(Q) = Q$ we see that the representation is faithful. Let $P = \langle a \rangle$, then the vector space Q does not contain a proper $\rho(a)$ invariant subspace, Othe rwise it is contrary to that Q is an irreducible P module. Let the matrix corresponding $\rho(a)$ be A on a certain basis of Q, then by [12] Chapter 3, Therem 2 we see that the characteristic polynmial of A is a minimal poly nomial. Also if the order of A is m, then $A^m = I$, that is, the characteristic polynomial of A divides exactly $x^m - 1$. Hence the characteristic roots of A are all unit roots of degree m on a certain finite extension field $K(q^n)$ of a q element field C_q , moreover, there is not a repeated root. Thus if f(x) (mod q) could be reduced, $f(x) = f_1(x)f_2(x)$, we would prove easily that $$A \sim \begin{pmatrix} A_1 & & \\ & A_2 & \end{pmatrix}$$ on C_q , in which A_1 , A_2 are respectively take $f_1(x)$, $f_2(x)$ as a characteristic polynomial. Since A is irreducible, therefore $f(x) \pmod q$ is also irreducible. Let $_{\omega \in K}(q^n)$, $f(\omega) = 0$, thus the number of the conjugate of ω is identical with the degree β of f(x). Suppose ξ is a generator of $K(q^n)$, thus $\xi \mapsto \xi^{q}$ generates the automorphism group of $K(q^n)$, Under this automorphism, $\omega \mapsto \omega^q$. As the order of A is m, the order of ω is also m, m = |P|. Hence the all conjugates of ω are ω^{q^0} , ω^{q^1} , ..., $\omega^{q^{p^{k-1}}}$, in which y is the exponent of $q \pmod{|P|}$, therefore $\beta = y$ and the lemma is proved. **Theorem 3.** Let G be a solvable CN-group, and let G be not nilpotent; let F be the Fitting subgroup of G. I. If F is a Hall subgroup of G, then G = HF, $H \cap F = 1$. Let $H = p_1^{a_1} \cdots p_r^{a_r}$, $F = q_1^{\beta_1} \cdots q_s^{\beta_s}$. 1. When H is a cyclic group, then G possesses the chief factors $p_1, \dots, p_1, \dots, p_r, \dots, p_r; q_1^{b_1}, \dots, q_s^{b_r}, \dots, q_s^{b_s}, \dots, q_s^{b_s}$. in which b_i is the exponent of $q_i \pmod{|H|}$, $\omega_i b_i = \beta_i (i = 1, \dots, s)$. Moreover the class of F is not more that $\sum_{i=1}^{s} \omega_i$. 2. When H is the direct product of a generalized quaternion group and 2 a cyclic group of odd order, then G possesses the chief factors $$2, \cdots, 2: p_2, \cdots, p_2, \cdots, p_r, \cdots, p_r: q_1^{b_1}, \cdots, q_1^{b_1\omega_r}, \cdots, q_s^{b_s}, \cdots, q_s^{b_s}, \cdots, q_s^{b_s\omega_r}.$$ in which $b_i | b_{ij}$, b_i is the exponent of $q_i \pmod{H/2}$, $\sum_{j=1}^{w_i} b_{ij} = \beta_i$, b_{ij-1} $(i=1, \dots, s, j=1, \dots, \omega_i)$. Moreover, the class of F is not more than $\sum_{i=1}^{n} \omega_i$. []. If F is not a Hall subgroup of G, then G = PHF. Let $|P| = q^p$, $|H| = p_1^{a_1} \cdots p_r^{a_r}$, $|F| = q^{\beta + \gamma}$, $O \le \gamma \le \beta$, we have $q^p \mid (p_1 - 1, \dots, p_r - 1)$. Moreover, G possesses the chief factors $$q, \dots, q; p_1, \dots, p_1, \dots, p_r, \dots, p_r; q^{d_1}, \dots q^{d_k}.$$ in which $\sum_{i=1}^{k} d_i = \beta - \gamma$, $\gamma < d$, $d \mid d_i$, $i = 1, \dots, k$, and d is the exponent of $q \pmod{|H|}$. **Proof.** I. If F is a Hall subgroup of G, then by Theorem 2, G = HF, H is a cyclic group or the direct product of a generalized quaternion group and a cyclic groupp of odd order. Since F is a nilpotent group, the Hall subgroups of F are normal in G, hence G has a chief series $$G > \cdots > F > \cdots > C_{i} > 1$$ in which C_t is an elementary Abelian group of order $q_t^{b_t}$, and q_t can be any number among q_1 , ..., q_s . We conside the subgroup $G_t = HC_t$, where C_t is a minimal normal subgroup of G_t . If not, we assume $1 \neq C_n < C_t$, $C_n < C_t$, then by Z(F) < G, $1 \neq Z(F) \cap C_t \cap G$ we see that $C_t < Z(F)$, the reby $C_n < F$. Hence $C_n < C_t C$ When H is a cyclic group, by Lemma 3, b_i is the exponent of $q_i(\text{mod} \mid \text{H} \mid)$. Considering the factor groups, by induction we see that G possesses the chief factors $$p_1, ..., p_1, ..., p_r, ..., p_r; q_1^{b_1}, ..., q_1^{b_1}, ..., q_s^{b_1}, ..., q_s^{b_1},$$ in which $\omega_i b_i = \beta_i (i = 1, \dots, s)$ and the class of F is not more than $\sum_{i=1}^{n} \omega_i$ When H is the direct product of a generalized quaternion group and a cyclic group of odd order, then by Lemma 2, G has a normal 2--complement G_1 . Suppose P is a cyclic group of of order 2^{a_1-1} of the 2-sylow subgroup S_2 of G ($|S_2|=2^{a_1}$), $G_2=PG_1$, thus G has a normal series $G>G_2>G_1>F>1$. Applying above discussion to G2, we conclude that G possesses the chief factors $$2, \cdots, 2; p_2, \cdots, p_2, \cdots, p_r, \cdots, p_r; q_1^{b_{11}}, \cdots, q_1^{b_{1}\omega_1}, \cdots, q_s^{b_{r1}}, \cdots, q_s^{b_{s\omega_r}}.$$ in which $b_i|b_{ij}$ $(j=1,\dots,\omega_i,\ i=1,\dots,s)$, b_i is the exponent of $q_i \pmod{H/2}$, $\sum_{j=1}^{\omega_i} b_{ij} = \beta_i \ (i=1,\dots,s)$, moreover, the class of F is not more than $\sum_{j=1}^{s} \omega_j$. Now we prove $b_{ij} > 1$, it must only show $b_{s\omega_i} > 1$. Let C_i is a minimal normal subgroup of C_i , if $|C_i| = q$, we discuss S_2C_i , by Lemma 1, the centralizer of C_i in S_2C_i is itself. Also since the automorphism group of C_i is a cyclic group and S_2 is a generalized quaternion group, we see that this case can not happen. []. If F is not a Hall subgroup of G, by Theorem 2, we can assume that F is a q-group, Moreover by |P| = qr, we obtain that $qr | (p_1 - 1, \dots, p_r - 1)$. In this case G has a normal series $$G = PHF > HF > F > 1$$, in which P and H are the cyclic groups of coprime orders, we refine it so as to obtain a chief series $$G>\cdots>HF>\cdots>F>\cdots>C,>1$$, r. Therefore $q > p_h - 1 < p_h \le q^d - 1 < q^d$, hence y < d. Its chief factors are $q, \dots, q; p_1, \dots, p_1, \dots, p_r, \dots, p_r; q^d, \dots, q^d$, in which $\sum_{i=1}^k d_i = \beta - \gamma$. Discussing the normal series of HF, since F is a normal Hall subgroup of HF, therefore the chief factors of HF are $p_1, \dots, p_1, \dots, p_r, \dots, p_r; q^d, \dots, q^d$, in which d is the exponent of $q \pmod{|H|}$. Hence we refine the normal series $HF > \dots > F > \dots > C_t > 1$ of HF so as to obtain a chief series, we obtain that $d \mid d_i$, $i = 1, \dots, k$. Since $q^r \mid (p_1 - 1, \dots, p_r - 1)$, also since the elements of L_h in semi-direct product L_hC_m (L_h is a subgroup of orden p_h of H; C_m is a minimal normal subgroup of HF) do not permute with the elements of C_m except 1, hence the normalizer of L_h in L_hC_m is itself, thus $1 + kp_k = |C_m| = q^d$, we conclude that $p_h \mid q^d - 1$, h = 1, **Theorem 4.** A CN-group G is supersolvable if, and only if, $F \neq 1$ and there is a normal subgroup of order q in G, for all $q \mid |F|$, in which F is a Fitting subgroup of G. **Proof.** It suffices to show sufficiency. If |F| is an even number, then by the hypothesis G has a normal subgroup of order 2, G possesses a central element of order 2, from G is a CN-group we see that G is a nilpotent group. Clearly G is supersolvable. If |F| is an odd number, then by Theorem 2, G is solvable. Moreover since G has a normal subgroup Q of order q, for all q||F|, it lies in the center of the q-sylow subgroup Q_1 of G. Thus $C_G(Q) \ge Q_1$, but $C_G(Q)$ is a nilpotent normal subgroup of G, hence $F \ge C_G(Q) \ge Q_1$. Therefore F is a Hall subgroup of G. Since q is all a chief factor of G, for all q||F|, by the uniqueness of the chief factors and Theorem 3. I., we conclude that G possesses the chief factors $p_1, \dots, p_1, \dots, p_r, \dots, p_r$; $q_1, \dots, q_1, \dots, q_s, \dots, q_s$. G is a supersolvable group. ## 2. π - Separable $C\pi\pi$ - Groups From the definition of $C_{\pi\pi}$ groups we see that G is a $C_{\pi\pi}$ -group if, and only if, G does not contain (π,π') -mixed elements, that is, the non identity element in G is either a π -element or a π' element. Thus, that G is a $C_{\pi\pi}$ -group but G is not a π -group is equal to that G is a C_{π} ' π' group but G is not a π' -group. **Lemma 4.** Let G be a $C\pi\pi$ group, $A \subseteq G$, if G/A has a non-identity π -element, then G/A is a C $\pi\pi$ -group. **Proof.** Since G is a $C\pi\pi$ -group, G has no (π,π') -mixed elements, this property is kept under the homomorphism. In fact, if G/A is not a $C\pi\pi$ group, since G/A has a non-identity π -element, G/A is not a π' -group, Then G/A has a (π,π') -mixed element \overline{g} . Suppose g is an inverse image of \overline{g} in G, since under the homomorphism |g| ||g|, we conclude that g is a (π,π') -mixed element, contrary to that G is a $C\pi\pi$ -group. **Lemma 5.** If G is a $C_{\pi\pi}$ -group, G is not a π group, $1 \neq A \triangleleft G$ and then $C_G(A)$ is a nilpotent normal subgroup of G. **Proof.** Since $C_G(A) \setminus N_G(A) = G$, if $C_G(A) = 1$, then the conclusion is obviously true. Thus we can assume $C_G(A) \neq 1$, by $C_G(A)$ is a $C_{\pi\pi}$ -group, G can only contain π -elements or π' -elements, thereby $C_G(A)$ is either a π -group or a π' -group. If $C_G(A)$ is a π -group, then since G is not a π -group, $C_G(A)$ admits a fixed-point-free automorphism of order G order G, by Thompson's theorem ([9] Theorem 12.9), $C_G(A)$ is a nilpotent group. If $C_G(A)$ is a π' -group, then since G is a $C_{\pi\pi}$ -group, $C_G(A)$ admits a fixed-point-free automorphism of order G, it is similarly nilpotent. For convenience, we call the finite groups in which every Sylow subgroup is a cyclic group or a generalized quaternion group ZQ groups. Obviously, the subgroups of ZQ-groups are ZQ-groups. **Lemma 6.** If ZQ group N is a characteristic simple group, then the order of N is a prime. **Proof.** The characteristic simple group is the direct product of isomo rphic simple groups, its every direct factor is a simple ZQ-group, by (7), a simple ZQ-group is a group of prime order. Again because every Sylom subgroup of ZQ-groups—contains only a group of order p, we conclude that the order of N is a prime. **Theorem 5.** Let G be a π separable group and let G be not a π -group; let F be a fitting subgroup of G. Thus I. F is a non-identity π -group. 1. When F is a π' -Hall subgroup of G, G=HF, H is a ZQ-group. Moreover, G is a Frobenius group with Frobenius kernel F. 2. When F is not a π' -Hall subgroup of G, G = KHF, in whick K is a cyclic π' -group, H is a cyclic π group of odd order, $F = O_{\pi}(G)$. $|K| | (p_1 - 1, \dots, p_r - 1), p_1, \dots, p_r$ are all different prime factors of |H|. KH is a complementary group of F, moreover, it is a Frobenius group with Frobenius kernel H. HF $\leq G$, HF is a Frobenius group with Frobenius kernel II. F is a non-identity π group. In this case we can suppose that H is a π' Hall subgroup of G. and we have the same conclusion to I (exchanging only π and π'). Proof. Since G is a π -separable $C_{\pi\pi}$ -group, and G is not a π -group, hence $O_{\pi}(G)$ or $O_{\pi'}(G)$ is not 1 and G. But since G is a π' -separable $C\pi'\pi'$ -group and G is not a π' -group, therefore [] and [have completely the same conclusion. we need only discuss the case of $O_{\pi'}(G) \neq 1$. Since G is a $C_{\pi\pi}$ -group, $O_{\pi'}(G)$ admits a fixed point-free automorphism of order p $(p_{\epsilon\pi})$, by Thompson's theorem ([9]) Theorem 12.9) $O_{\pi'}(G)$ is a nilpotent group, hence $F = O_{\pi'}(G)$. If F is a π' -Hall subgroup, then G has π' -complement H, H is a π -Hall subgroup. It acts fixed-point-free on π' -group F. Hence H is a ZQ-group and case [-1], is true. Let F be not a π' -Hall subgroup, by the maximum property of F, $\overline{G} = G/F$ does not contain the normal π -subgroup, but \overline{G} is π -separable, it must contain a minimal normal π -subgroup \overline{P} , $\overline{P} = PF/F \cong P$. Since π -group P acts fixed-point free on π' -group F, \overline{P} is a ZQ-group. And by Lemma 6, \overline{P} is a group of order p $(p_{\epsilon\pi})$. Moreover, since \overline{G} is a $C_{\pi\pi}$ -group, hence $C_{\overline{G}}(\overline{P})$ does not contain π' -elements, it is a π -group. Furthermore, from F is not a π' -Hall subgroup of G, \overline{G} is not a π -group and $N_{\overline{G}}(\overline{P})/C_{\overline{G}}(\overline{P}) = \overline{G}/C_{\overline{G}}(\overline{P}) \approx (\text{the subgroup of Aut}(\overline{P}), \text{ i.e. the subgroup})$ of cyclic group of order p-1), we see that $\overline{G}/C_{\overline{G}}(\overline{P})$ can only contain π' elements and can't contain π -elements, therefore $\overline{G}/C_{\overline{G}}(\overline{P})$ is a cyclic π' -group. That is, $\overline{G}/C_{\overline{G}}(\overline{P})\cong \overline{L}$, in which \overline{L} is a π' -Hall subgroup of \overline{G} , moreover $|\overline{L}||p-1$. Also by Lemma 5, $C_{\overline{G}}(\overline{P})$ is a nilpotent normal subgroup of \overline{G} , hence $C_{\overline{G}}(\overline{G}) = F(\overline{G})$, and $\overline{G} = F(\overline{G})\overline{L}$. Since the inverse image of $F(\overline{G})$ in G has the normal Hall subgroup F, hence its complement H exist. Therefore, $F(\overline{G}) = HF/F \cong H$, H is a nilpotent π -group of ZQtype and HP $\leq G$. By Frattini's argument ([11] IV.2.e), we obtain G = $N_G(H)$ HF = $N_G(H)$ F, also since the non-identity elements between F and H do not permute, we conclude $N_G(H) \cap F = 1$. Let K be a π -complement of $N_G(H)$, thus $N_G(H) = KH$, G = KHF, and $K \cong \overline{L}$, K is a cyclic π' -group. Suppose p_1, \dots, p_r are all different prime factors of |H|, since $H \cong F(\overline{G}) \triangleleft$ \overline{G} , H is a nilpotent ZQ-group, we obtain that \overline{G} has the normal subgroup of order p_i $(i=1, \dots, r)$. Like the discussion of \overline{P} we can obtain |K| $(p_1 - 1, \dots, p_r - 1)$. Hence if H is a group of even order, then we have clearly that K=1, G=HF, F is a π' -Hall subgroup of G, contrary to hypothesis. Therefore, H is a cyclic \u03c4-group of odd order. In this theorem the conclusions about Frobenius groups can immediately be obtained by the definition of $C_{\pi\pi}$ groups and [9] Theorem 10.5. This theorem is a generalization of $\{1\}$ Theorem 1, $\{3\}$ II. Theorem 1, Theorem 2, the partial results of $\{6\}$ and $\{15\}$ Lemma 2.3. From Theorem 5 we deduce easily the conclusion of (14) that if G is a solvable $C_{\pi\pi}$ -group; G is not a π group, then either a π -Hall subgroup or a π' -Hall subgroup of G is a nilpotent CCT-subgroup. Furthermore, we can generalize following corollary from this theorem. Corollary 3. If G is a π -separable $C\pi\pi$ -group and G is not a π -group, then either a π -Hall subgroup or a π' -Hall subgroup of G is a nilpotent CCT-subgroup. **Proof**. By Theorem 5, we need only conside this case in which F is a non-identity π' -group. When F is a π' -Hall subgroup of G, G=HF, where F is a Frobeniue kernel of G, by [9] Theorem 10.5.2) we see that F is a nilpotent CCT-subgroup. When F is not a π' -Hall subgroup of G, G=KHF, where the cyclic group H is a nilpotent π -Hall subgroup of G; moreover, H is a Frobenius kernel of KH and H is a Frobenius complement of HF. Let g be an element of G. Since g = khf, $k \in K$, $h \in H$, $f \in F$, $H^g = H \cap H^g = H \cap H^f = 1$ or H, that is, H is a TI-set. Moreover, since if the element $g \neq 1$ of G permute with the element $h_1 \neq 1$ of H, then we can conclude $g = h\epsilon H$. Thus $C_G(h_1) \leq H$, $1 \neq h_1\epsilon H$, i.e. H is a CC subgroup. Therefore, in this case the π -Hall subgroup H is a nilpoten CCT-subgroup. According to Theorem 5 and Lemma 3, we may discuss the chief factors of the solvable $C\pi\pi$ groups as we discuss the solvable CN-groups. **Theorem 6.** Let G be a $C_{\pi\pi}$ -group and let G be not a π -group; let F be a Fitting subgroup of G. If G has a normal subgroup Q of order q, then G is solvable, and $F = C_G(Q)$, |G/F||q-1; G = HF, in which H is a cyclic Hall subgroup of G. If G has a normal subgroup of order q_i , for all $q_i \mid F$, then G is supersolvable. **Proof.** Since $Q \leq G$, $Q \leq O_k(G)$, we obtain that $Q \subseteq Z(O_q(G))$, hence $Q \leq Z(F)$, thus $C_G(Q) \geq F$. Also by Lemma 5, $C_G(Q)$ is a nilpotent normal subgroup of G, from the maximum property of F, $C_G(Q) = F$. But since $G/F=N_G(Q)/C_G(Q)$ = the subgroup of cyclic group of order q-1, we obtain that G/F is solvable, deduce that G is solvable, and |G/F|/q-1. Since G is a $C_{\pi\pi}$ -group and G is not a π group, hence from G/F is an abelian group, we result in (|G/F|, |F|)=1. Thereby G=HF. H is a cyclic Hall subgroup of G. If G has a normal subgroup Q_i of order q_i , for all $q_i \mid F \mid$, then from the discussion above we see that G is solvable, moreover $C_G(Q_i) = F$. Furthermore, G = HF, F is a Hall subgroup of G, and the complementary group H of F is cyclic. Like the case of Theorem 3. 1.1 completely, by Lemma 3 we can immediately conclude that the chief factors of G are $p_1, \dots, p_1, \dots, p_r, \dots, p_r, q_1^{b_1}, \dots q_1^{b_1}, \dots, q_s^{b_r}, \dots q_s^{b_r}$; in which $|H| = p_1^{a_1} \dots p_r^{a_r}, |F| = q_1^{b_1} \dots q_s^{b_s}$, b_i is the exponent of $q_i \pmod{|H|}$. Since q_i is all a chief factor of G, for all $q_i \mid F|$, by the uniqueness of the chief factors we see that G is supersolvable. We see easily that the supersolvable conditions is this theorem are also necessary. ### **Acknowledgements** This paper is completed under Professor Chen Zongmu. We are most grateful to him for his instruction and help. #### References [1] Higman G., Finite groups in which every element has prime power order, J. London, Math. Soc., 32: 127 (1957), 335-342. - Feit W., Hall M., Thempson J.G., Finite groups in which the centralizer of any non-identity element is nilpotent, Math. Z., 74 (1960), 1-17. - 3 Suzuki M., Finite groups with nilpotent centralizers, Trans. Amer. Math. Soc., 99: 3 (1961), 425-470. - (4) Arad Z., Chillage D., On centralizers of elements of odd order in finite groups, J.Algebra., 61 (1979), 269-280. - (5) Arad Z., A classification of 3CC groups and application to Glauberman Gold schmidt theorem, J. Algebra., 43 (1976), 176-180. - [6] Arad Z., Herzog M., On fundamental subgroups of order divisible by three, Houston J. Math., 3 (1977), 309 -313. - (7) Brauer R., Suzuki M., On finite groups of even order whose 2 sylow groups is a quaternion group, Proc. Nat. Acad. Sci., 45 (1959), 1757-1759. - (8) Burnside W., Theory of Groups of Finite Order, 2nd edition Cambridge 1911. - [9] Kurzweil H., Endliche Gruppen, Springer-Verlag, Berlin-Heidelberg-New York. - [10] Hall M., The Theory of Groups, The Macmillan Co., New York, 1959. - (11) Schenkman E., Group Theory, D. Van Nostrand Co., Princeton, New Jersey, 1965. - . (12) Jacobson N., Lectures in Abstract Algebra, Vol.2., New York, Van Nostrand Reinhold, 1956. - [13] Gorenstein D., Finite Groups, Harper and Row, New York/London, 1968. - [14] Arad z., Chillage D., Finite groups with conditions on the centralizer of π-elements, Comm. Algebra. 7 (1979), 1447-141468. - [15] Williams J.S. A sufficient condition on centralizers for a finite group to conta in a proper CCT subgroup, J. Algebra, 42 (1976), 549 -556. - (16) Gruenberg K.W., Roggenkamp K.W., Decomposition of the augmentation ideal and of the relation modules of a finite group, Proc. London, Math. Soc., 31 (1975), 149-166.