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Ramsey Numbers for Triangles and Graphs

of Order Four with No Isolated Vertex
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Abstract Let mG denote the union of m vertex-disjoint copies of G.The
Ramsey numbers r(mG, nK;) are determined for all graphs of order four with
no isolated vertex.

I . Introduction

The determination of Ramsey numbers r(G, H) has been received attention
from several mathematicians in recent years, There has been notable success in
evaluation of exact Ramsey numbers for multiple copies of graphs (see (3).(4).
{51). A general and extensive survey is given in (1].

Let mG denote the union of m vertex-disjoint copies of G. The Ramsey nu-
mber r(mG, nK;) is then the least integer p such that if the edges of K, are
two-colored, say red and green, there must be either a “red mG”(a graph mG
with all edges colored red) or a “green nK;”,its existence is guaranteed by fam-
ous theorem of Ramsey. It is known that the Ramsey numbers r(mK,;, nK;) and
r(mK,, nK;) are given by S.A.Burr, P. Erdds, J. H. Spencer ( 3] and P.J.Lori-
mer, P.R. Mullins [ 4], respectively. In this paper, the Ramsey numbers r(mG,
nK,) are determined for all graphs offorder 4 with no isolated vertex. The

main results we shall prove are

Theorem | - H(m2K,, nK,) = {4m+2"_1 nszm
2m+3n—1 2m<n
(4m+ 3 n=1
] am+ 4 n=2
Theorem 2 . r(mK, ;, nK;) = dm+on— 1 3 <n<3m
\Lm+3n— 1 Im<n
dm+ 3 n=1
Theorem 3 . r(mPy, nK;)=r(mC,, nK;)= « 4m+2n 2<n<2m+1
2m+3n—1 2m+ 1<n
am+3 n=1
Theorem4 . r(m(K, ;+x), nK;)=r(m(K,—x), nK;) = 4m+2n 2<n<2m

om+3n 2m<n
» Received July 21, 1982.
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The proofs of the theorems by induction on m and n are based on the initi-
al values r(2K,, K3;) =5, r(Py, Ky) =r(Cy, Ky =r(Ky,;, K =r(K;+x, Ky = (K,
-%,K3) =7, which can be found in { 2], r(K,~x,2K;) =8, r(C,, 3K;) =10,
r(K;.;, 3K3) = 9. The finai three values can be proved straightforward simply
by considering all the different ways in which the relevant complete graph can
be colored. It seems unnecessary to go into details here.

2. Lower Bounds

In this section, ws= shall construct Ramsey graphs RG(mG, nK;) for all gra-
phs G of order 4 with no isolated vertex, so that the numbers given are lower
bounds for the appropriate Ramsey numbers. In each case this involves describ-
ing a graph with one fewer vertices than the number given and having no red
mG or green nK;.

(1) Lower bounds for r(m2K,, nK;)

For n<2m, let G, be a red K,,,, G, a green K,,,, and suppose G, and G,
are disjoint. Join each vertex of G, to each vertex of G, by a green edge. The
resulting complete graph has 4m+ 2n -2 vertices but no subgraph m2K, colored
red and no subgraph nK; colored green. Hence r(m2K, nK;)>dm+2n—-1., n<2m.

For 2m<n, let G, be a red K,,;, G, a green K;, ,, and suppose G, and G,
are disjoint., Join each vertex of G, to each vertex of G, by a red edge. The
result is a complete graph with 2m +3n - 2 vertices which has neither red m2K,
nor green nK; as a subgraph. We so have r(m2K,, nK;)>2m+3n—-1, 2m<n.

( 2) Lower bounds for r(mK, ;, nK}y)

Let n=1, for each m, the graph, constructed by joining each vertex of a
complete graph G, with 4m —1 vertices and all the edges colored red and each
vertex of a disjoint red triangle G, by a green edge, contains no red mK,, ; and
no green K,, since the green subgraph is a complete bipartite graph K, ,.; with
no odd cycle. Hence r(mK, ;, K;) >4m + 3.

For n=2 and each m, let G be the graph constructed above for n=1, v a
vertex not in G. Join each vertex of G and v by a green edge. We then have
a graph with no red mK,, ; and all green trriangles having the vertex v. Hence
there exists no green 2K; and r(mK, ;, 2K;) >4m + 4.

For 3<n< 3m, let G, be a red complete graph of order 4m-1, G, a green
complete graph of order 2n~1. Suppose the two graphs are disjoint.Join each
vertex of G; to each vertex of G, by a green edge. The result is a complete
graph with 4m+ 2n -2 vertices, which has no subgraph mK, ; colored red and
no subgraph nK, colored green. Therefore, r(mK,, ,, nK;) >4dm+2un -1, 3<n<3m.

For 3m<n, let G be a graph constructed by joining each vertex of a green

K;,, and each vertex of a red K,_, by a red edge. It is clear that G contains



neither red mK, ; nor green nK; as a subgraph, as desired,

( 3) Lower bounds for r(mP,, nK;), r(mCy, nK3), rim(Ky,3+x), nK;) and
r¢im(K,—-x), nKj)
' For n=1, let G, be a red K4,-, G;a red K; and suppose they are disjoint.
Join each vertex of G, and each vertex of G, by a green edge. Since the green
subgraph of the resulting graph is bipartite, there is no green triangle. Moreover,
over, it has no red mP,, so r(mP,, K;)>4m +3. Note that P,CC,CK,-x, P,C K, ;
+X, hence r(mG, K;)>4m +3, where G may be C,, K, ;+x, K;—x.

For 2<n<2m+1, let G, be a red K,,_;, G, a green K,,,, G; a vertex, and
suppose the three graphs are disjoint. Join each vertex of G, and each vertex
of G, and G; by a green edge, and each vertex of G, and the vertex of G, by
a green edge. The result is complete graph with 4m+2n -1 vertices which con-
tains no green nK; and no red mP,. It follows that

r(mC,4, nK;)>r(mP,, nK;)>4m+ 2n, 2<n<2m+1;
r(m(Ky—x), nK)>r(m(K,, 3 +x), nK) >dm+2n, 2 <n<2m.

For 2m+ 1<n, it follows from r(m2K,, nK;)>2m +3n -1 that r(mC,, nK;) >
r(mP,, nK;)>2m+3n-1 by mC,CmP,Cm2K,.

Finally, for 2m<n, let G, be a red K,,_,, G, a green K;,,, G; a vertex, and
suppose the ‘three graphs are disjoint. Join each vertex of G, and each vertex
of G, and G, by a red edge. The resulting complete graph has 2m+3n-1 vert-
ices which has no green nK,; and no red m(K,,; +x). Hence r(m(K —-x), nK;)>
r(m(K; ;+x), nK;) >2m+3n, 2m<n.

3. Some Useful Lemmas

Before turning to proving that the numbers given are also the upper bounds
for the Ramsey numbers, let us show several useful lemmas which will be used
in induction nextssection. The subgraphs whose existence are guaranteed by the-
se lemmas play the same role as the “bowtie” in { 3].

Lemmal . If two-colored complete graph G contains mutually disjoint red
K,-x and green K,, then it contains a subgraph H; of order 6 having a red K,
-x and a green K;.-

Proof. Assume the contrary. Then no vertex of the green K, is joined to
the vertices { v;, v,} of K,—x, shown in Fig., by two red
edges, and so each is joined by at least one green edge to ” MU
{ v;{, v,}. Hence there are at least three green edges joining ' Ffj *
{v,, v,} and the green K;, so that one of the {v,, v,} has two green edges joi-
ning it to the green triangle. This gives a red K,—x and a green K, having a
vertex in common, as required. |

Corollary. If two-colored complete graph G contains mutually disjoint red



K,—x and green 2K,, then it contains a subgraph H, of order 8 having a red
K,~x and a green 2K;.

Proof. Assume the contrary. With Lemma | we may suppose that G has a
subgraph H, of order 6 as above, where v is a common vertex of red K, ,-x
and green K,. Moreover, suppose vy, v, are the vertices of Hy which G {{v,v,,
v, ] is a red triangle. Then no vertex of another K;, whose vertices are uy,u,,
u;, is joined to {v,, v,; by two red edges. As in the proof of Lemma |, one
of the {v,, v,} must be joined to two of {u,, u,, u;}, say u, any u,, by green
edges. Hence the subgraph induced by the vertices of H, and u,, u, is disired.

Using the same method, we can prove the following '

Lemma2 . If two-colored complete graph G contains mutually disjoint red
C, and green 2K,, then it contains a subgraph H, of order 8 having a red C,
and z; green 2K;.

Lemma3. If two-colored complete graph G contains mutually disjoint red
2K, and green K,, then it has a subgraph H,; of order 6 with a red 2K, and a
green K;.

Lemmad4 . If two-colored complete green G contains mutually disjoint red
K, , and a green kK,, then it has a subgraph with 4 +2k vertices containing a
red K, , and a green kK;, where £=1,2,3.

A well known result [ 4] is that

Lemmab. If m>2, then r(mG, H)<r((m-1)G, H) + p(G), where p(G) is
the order of G.

Lemma6 . Suppose that any two-colored complete graph containing mutually
disjoint red G and green kH contains a subgraph G, with p(Gy) vertices which
has a red G and green 4H. Then if m>1, n=k>1, r((m+1G, (n +kYH)<r(mG,
nH) + p(Gy) .

Proof. Let p=/(mG, nH) + p(G,). Consider two-colored K, with no green

(n+kYH. Since r(G,(n+iYH)<r(mG, nH) + k p(H) <r(mG, nH) + p(Gy), K, cont-
ains a red G. Note that r(mG, tH)<r(mG, nH) r(mG, nH) + p(Gy) — p(G), the
subgraph formed by subtracting the p(G) vertices of red G has either a red mG
or a green kH. In the former case, the desired result follows immediately, and
in the latter case, it can be deduced from the hypothesis that K, has subgraph
Gy containing a red G and a green kH. Removing these p(Gy) vertices we get
a subgraph G, which has r(mG, nH) vertices. Hence G, has either a red mG or
a green nH. The latter is exclyded and the former again can be adjoined to the
G in G, to give a red (m+ DG.

r(m+ DG, (n+kHH)Y<p=r(mG, nH) + p(Gy) .
4 . Upper Bounds
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We finally show that the numbers given are upper bounds'for the Ramsey
numbers in all cases and complete the proofs of our main results. The upper
bounds are derived by induction based on the initial values given in Sec. 1,
and with induction steps by the lemmas proved in Sec, 3,

(1) Upper bounds for r(m(K,- x>, nK;)

First, since r((K,-Xx), K;)=7 and r(K,-x. 2K;)=8, it follows from Lemma
5 by induction that r(m(K,-x), K;)<{dm+3 and r(K,-x, aK;)<{2+3n for n>2,

Suppose that for m>2, n>2,
4(m—1)+2n 2 n<2(m—- 1)
2{m=1) +3n 2(m-1D<n.

Then by Lemma 5, we have r(m(K,—x), nK)<dm+2n, 2<n<{2(m—-1). The hy-

potheses of Lemma 6 have been shown, by Lemma 1 and its corollary, to be

r({m-1)Y(K,—X), nK;)< {

satisfied for n=2m-1 and 2m, respectively. Hence

Fm(Ky-x),2m= DK <r((m- 1) (Ks~-x),20m-DK3) +6<4(m-1)+2 2(m—-1)+6

=4m+2(2m-1) and r(m(K,—x), 2mK)<r((m—- 1)(K;~-x),(2m—-2)K;)+8<im+2*2m
The result r(m(K,-x), nK;)<{2m+3n, 2m<n, follows by induction on n from

Lemma 5 based on the initial condition just proved r(m(K,—x), 2mK;)<4m+ 2+2m

=2m+ 3*2m.

Since m(K, ;+x) Cm(K,-x),

4m+ 3 n=1
r¢m(K, 3+ X)), nK)<<r(m(K4—x), nK;)< < 4m+2n 2<n<l2m
 2m*3n 2m< n
Theorem 4 holds.
(2) Upper bounds for r(mC,, nK;)
4m+3 n=1
By CoCKem s ch“nKﬂ<:{ dam+2n  2<n<l2m

Since r(C,, 3K;) =10, r(C,, nK;d<{3n+1, n>3.

Now assume that for some m>1, the result r(mC,, nK;)<2m+3n-1, 2m+1
< n, has been proved. Then by Lemma 2 and Lemma 6, r((m+1)C,,2m+ 3)K;)
<Lr(mC,,(2m+ DK;) +8<2m+ (6m+3)~1+8=2(m+1)+3n—1, n=2m+3, It follows
by induction on n, n>2m+3, from Lemma 5 that r((m+1)C,, nK))<2(m+ 1)+
3n-1. Hence, since P,CC,,

(4m+3 no= 1
r(mP,, nK )< r(mC,, nK;)<C < 4dm+2n 2<n<2m+1
‘ LZm+3n—1 2m+ 1<n

The proof of Theorem 3 is completed.

(3) Upper bounds for r(m2K,, nK;)

By (3], Theorem 9, r(m2K,, 2mK;)=8m-1. Hence r(m2K,, nK)<2m~+3n-1,

B
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r>2m, since 2K, CC,.

For n even, r((n/2)2K,, nK;) =4(n/2) +2n-1. Since r(m2K,, nK;)<r((m-
152K,, nK;) +4, m>2, it follows by induction on m that r(m2K,, nK;)<4m+
Z2n—1, m>(n/2).

For n>>1 odd, by Lemma 3 and Lemma 6, we have r(((n+1)/2)2K,, nK;)<
r(((n—=1)/2)2K,, (n-1DK;) +6<4*((n+1)/2)+2n—-1. The desired result r(m2K,,
nK))<dm+2n-1, m>(n+1)/2, will follow from the initial condition just deriv-
ed by induction on m immediately. This proves Theorem 1.

(4) Upper bounds for r(mK, ;, K;)

The remaining case we now consider is that for K, ;, which will also conc-
lude our proof.

K, ;CK, - x implies that r(mK, ;, K;)<<dm+3 and r(mK, ;, 2K;)<4m+4,
Based on the initial value r(K,,;, 3K;) =9, it is given by induction and Lemma
5 that r(K, ;, #K;)<3n, n>3.
dm+2n-1  3<n<<3m
m+3n—1 Im<n
Then r((m+1)K,,;, nK;)<4(m+1)+2n-1, 3<n<3m. By Lemma 4 and Lemma 6,
we have r((m+ 1K, ;, Gm+ KD r(mK, 45, 3mK;) +4+2k<4(m+ 1) +2(3m+ k) -1,
where k=1,2,3.

Hence Lemma 4 anh Lemma 6 and the above result enable us to prove by
induction that r((m+ DK, ;, nK) )< (m+1) +3n-1, where n>>3m. Theorem 2 is
proved.

Suppase for m>1, n>3, r(mK, ;, "K3)<{
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