Cardinality of a Class of (0.1) Matrices Covering a Given Matrix*

Wan Honghui

(Huazhong University of Science and Technology)

Let R and S be two vectors whose components are m and non-negative integers, respectively. Let P be an $m \times n$ (0,1) - matrix with column sums at most one. Let $\mathcal{O}_p(R,S)$ be the class consisting of all $m \times n$ (0,1) - matrices with row sum vector R and column sum vector S, which cover P. In this paper we derive a lower bound to the cardinality of class $\mathcal{O}_P(R,S)$, which can be computed readily.

Let $R = (r_1, r_2, \dots, r_m)$ and $S = (s_1, s_2, \dots, s_n)$ be vectors with nonnegative integral entries and $r_1 + \dots + r_m = s_1 + \dots + s_n$. Let \mathfrak{X} (R, S) denote the class of all $m \times n$ (0, 1) - matrices with i^{th} row sum r_i and j^{th} column sum s_j for $1 \le i \le m$ and $1 \le j \le n$.

Let $A = (a_{ij})$ and $B = (b_{ij})_{\circ}$. Then we say $A \ge B$ or A covers B if and only if $a_{ij} \ge b_{ij}$ for all pair i, j. Let P be an $m \times n$ (0,1) - matrix with j^{th} column sum ε_j ($\varepsilon_j = 0$ or 1) for $1 \le i \le n$. Define

$$\mathcal{X}_{P}(R, S) = \{A \in \mathcal{Y}(R, S) | A \geq P\}.$$

So that the class $\mathfrak{A}_P(R, S)$ is not trivially empty, we require that no row (column) sum of P is greater than the corresponding row (column) sum in R(S). Let A* be a matrix with row sums $r_1, r_2, \cdots r_m$. Also, A* has 1/s wherever P has 1/s. The remaining 1/s in A* are placed as far to the left as possible. Define S* to be the j^{th} column sum of A*. We call vector $S^* = (s_1^*, s_2^*, \cdots s_n^*)$ the P-required conjugate of the vector $R = (r_1, \cdots, r_m)$. Anstee proved that $\mathfrak{A}_P(R, S)$ is non-empty if and only if

$$\sum_{1 \le i \le t} s_i^* \ge \sum_{1 \le i \le t} s_i \qquad (1 \le t \le n), \qquad (1)$$

where $s_1 \ge s_2 \ge \cdots \ge s_n$. A more difficult problem is to determine the card-

^{*} Received Fed. 2.1984.

inality of the class $\mathfrak{U}_{P}(R,S)$. In this paper we derive a lower bound on $|\mathcal{U}_{P}(R,S)|$.

Let $S' = (s_1', s_2', \dots, s_n')$ and $S'' = (s_1'', s_2'', \dots, s_n'')$ be two vectors with non-negative integral entries, we say that S'' is weakly majorized by S', and write

$$S'' \prec S'$$
, (2)

if

$$\sum_{1 \le i \le t} \mathbf{S}_i' \ge \sum_{1 \le i \le t} \mathbf{S}_i'' \quad (1 \le t \le n-1), \quad \sum_{1 \le i \le t} \mathbf{S}_i' = \sum_{1 \le i \le n} \mathbf{S}_i'' \quad . \tag{3}$$

Now suppose that $S'' \mapsto S'$, $S'' \neq S'$ and

$$s_1'' \ge s_2'' \ge \cdots \ge s_n'' . \tag{4}$$

Let i_p $(1 \le p \le q)$ be all the subscripts for which

$$s_{ip}^{\prime\prime} \geq s_{ip}^{\prime}$$
 , $1 \leq p \leq q$. (5)

Let k be the largest subscript smaller than i_1 such that $s'_k > s''_k$. According to (3) and (4), k exists. Obviously,

$$s'_{k} > s''_{i}, \quad s''_{i} = s'_{i}, \quad k < j < i_{1}$$
 (6)

Let $d_{ki_1} = \min (s'_k - s''_k, s_{i_1}'' - s_{i_1}')$ and $\mathbf{S}^{(1)} = (s_i^{(1)})$, where $s_i^{(1)} = s_i$ $(1 \le i \le n)$ except that $s_i^{(1)} = s'_k - d_{ki_1}$ and $s_{i_1}^{(1)} = s_{i_1}' + d_{ki_1}$. Then $\mathbf{S}'' \prec \mathbf{S} \prec \mathbf{S}'$.

Moreover, the number of corresponding components in S'' and $S^{(3)}$ which are equal is at least one more than those which are equal in S'' and S'. We can obtain in a similar fashion a vector $S^{(2)}$ such that

$$\mathbf{S}'' \prec \mathbf{S}^{(2)} \bowtie \mathbf{S}^{(1)}$$

and the number of corresponding components in S'' and $S^{(2)}$ which are equal is at least one more that those which are equal in S'' and $S^{(1)}$. Repeating this process, we obtain a sequence of vectors:

$$\mathbf{S}'' = \mathbf{S}^{(t)} \prec \mathbf{S}^{(t-1)} \prec \cdots \prec \mathbf{S}^{(t)} \prec \mathbf{S}^{(t)} \prec \mathbf{S}^{(t)} = \mathbf{S}'. \tag{7}$$

The sequence of vectors is called the total chain from S' to S'', whenever S'' satisfies (4). If q=0 we have $\ell=0$ in (7).

As mentioned above the reader may also refer to (2) + (5).

We define \wp_P , which is a function of S' and S'' satisfying (1) --- (6), as follows:

$$\omega_{\mathbf{P}}\left(\mathbf{S}'',\mathbf{S}'\right) = \left(\frac{s_k' - s_{i-}' - \varepsilon_k}{d_{ki_+}}\right)$$

Theorem Let P be an $m \times n$ (0,1) - matrix with i^{th} column sum ε_i $(\varepsilon_i = 0)$ or t.

for
$$1 \le i \le n$$
, If (1) holds, and $s_1 \ge s_2 \ge \cdots \ge s_n$, then
$$|\mathfrak{A}_{\mathbf{P}}(\mathbf{R}, \mathbf{S})| \ge \prod_{0 \le i \le n-1} \omega_{\mathbf{P}}(\mathbf{S}, \mathbf{S}^{(i)}) \ge 1. \tag{8}$$

where $S^{(i)}$ $(0 \le i \le t-1)$ are all the elements except $S^{(i)}$ in the total chain from vector S^* to S_*

Proof Let $S'' \bowtie S'$ be two vectors satisfying (4) = (6) Let $A' \in \mathfrak{D}_p$ (R, S'), and A'_{ki_1} be the $m \times 2$ matrix consisting of the k^{th} column A'_k and the $i'_1{}^h$ column A'_{i_1} of A'. We define a 1 in an $m \times n$ (0,1) - matrix to be free if it is not in the same position as a 1 in P.

There are at least $s_k' - s_{i_1}' - \varepsilon_k$ rows in A_{ki_1}' that are of the form (1,0), in which the 1 is free. We exchange the elements in each of any d_{ki_1} rows in A_{ki_1}' that are of the form (1,0), in which the 1 is free, such that at least one of the column sums of the resulting matrix A_{ki_1}'' is equal to the corresponding component of the vector (s_k'', s_{i_1}'') .

By (5) and (6), we have

$$s'_k - s'_{i_1} - \varepsilon_k \geq d_{ki_1}$$
.

The number of ways to select d_{ki_1} rows in \mathbf{A}'_{ki_1} that are of the form (1,0), in which the 1 is free, is at least $\omega_{\mathbf{P}}(\mathbf{S}'',\mathbf{S}')$, we change those elements in the k^{th} and i_1^{th} columns in \mathbf{A}' as we did in \mathbf{A}'_{ki_1} , and do not change other elements. Thus, we obtain a set of matrices which are different from each other, and the number of the matrices is at least $\omega_{\mathbf{P}}(\mathbf{S}'',\mathbf{S}')$.

We apply the above method for S - S' at first, and then for $S - S^{(1)}$, ..., finally for $S + S^{(i-1)}$. Let the $\lambda^{(n)}$ and the $\eta^{(i)}$ component of $S^{(i-1)}$ be changed when $S^{(i-1)}$ are changed into $S^{(i)} + \lambda^{(i)} + \lambda^{(i)}$

$$\xi \leq \lambda \leq \mu \leq \eta \quad . \tag{9}$$

and at most one of equalities holds. If D is a matrix, we denote its h^{th} column by D_h . Now let A and B be two distinct intermediate matrices with j^{th} column sum $s_j^{(l)}$ for $1 \le j \le n$. Then there exist a and $b \ge a \le f \le n$, such that (see the lemma in $\{1, 1, 2, 3\}$)

$$\mathbf{A}_{c} = \mathbf{B}_{c}, \mathbf{A}_{f} + \mathbf{B}_{f}$$

Thus the matrices with j^{th} column sum $s_j^{(l+1)}$ for $1 \le j \le n$, which are obtained by **A**, are different from those by **B**. Therefore, the resulting matrices are all distinct, and (8) is true.

Simply take P = 0 and note that $\overline{S} = S^*$, our theorem reduces to Wei's

therom [3]

References

- [1] R. P. Anstee, Properties of a class of (0,1) matrices covering a given matrix, Can. J. Math., 34:2 (1982), 438-453.
- (2) C. H. Hardy, J.E. Littewood, G. Pölya, Inequalities, Cambridge University Press, 2nd Edition, 1952.
- [3] Wei Wandi, The class $\mathfrak{U}(\mathbf{R}, \mathbf{S})$ of (0,1)—matrices, Discrete Math., 39 (1982), 301-305.
- [4] Wan Honghui, Structure and cardinality of class $\mathfrak{U}(R, S)$ of (0,1) matrices, J. of Math. Research & Exposition, 4(1984), No. 1, 87-93.
- [5] Wan Hohghui, Cardinal function f(R, S) of the class $\mathfrak U$ (R, S) and its non-zero-point set J. of Math. Res. & Exposition. 5 (1985), No. 1, pp. 113-6.