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The Global Solution for One Class of the System
of LS Nonlinear Wave Interaction*
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l.Introdution

Recently Djordjevie and Redekopp { 1] found that the evolution egua-
tions describing the resonance iateraction between the long wave and the
short wave can be written as

iS,+7,8, =LS o
L

In the above equations, § is the envelope of the short wave, whilc L s

c=—a (1S, (1.2
amplitude of long wave and is real, 4 and ¢ are positive constants, As point
out in 711 . the physical significance of Ega (],1)and 1,7y is such that
the dispersion of the short wave is balanced by nonlinear Imeraction of the
fong wave with short wave, while the evolution of the long wave is driven
by the self-interaction of the short wave, I'hese eguattons also appeuar in
an analysis of internal wave 727 ., as well as Rossby Waves.In plasma
physics €3 7 simifar equations which describe the resonance bhetween highire -
quency clectron plasma oscillations and associated tow-frequency on density
perturbations . Benney [ 4 | presented a general theory for the interactions
between short waves and long waves,

In this paper.we prove that the existence and uniqueness of the globaj
solution for the initial value problem and periodic initial value problem
of the equations (1,]1) (1.2 ).
"2 . The Interal Estimates

For convenience we consider the following syytem of the eguations

(o, + o - ane =j [
{ n,+ p et =0 (2.2
with the initial conditions
t i
= ! - S S .
[, =& (x nloL o, vl e, :
= Receiged Apr 27 1eRS,
-0 e
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a real valu-

assume

fxj

vhere :(x,r)is a compiex vaived uvaknowa function, n (x,t)is
constants, i=.—1] , we always

ed unknown function, a, p are real so=
tant the functions ¢ n and some of their derivatives tend to zero as
=2 .and adopt the notation and convention as in [ 57,

gn for the solution of

I If ¢, (x)el,, then

the problem (2.1

Lemma
(2.2 (2.3), we have
e Gl =l ol (2.4)
Proof Multiplying (2.1) by 5,35&1 taking the inner product it follows
(evs&)—a (ng ) =9.

(e, e)+
the abeve inequality, We derive

imaginary part of
I ety =0.ie. BeCnly =& |
- ilSHLI"O-‘-‘«- el 0 liy =% iy -

Taking the
(&0 €)= — .E&HLZ »

Suppose that the following conditions
(”) nu(_X)EL: s

Lemma 2
xyeH |

(1) g
(2.5)

are satisfied, then we have
Er=le Ol +alnt.o)le CooPda=E Q)
product, it foliows

) by s.and taking the inner

Proof Multiplying (2.1
& s)— (me, ¢ =0, Taking the real part of the above equation.

Y 4 (b\.'9 &

(Foo. o
1ovie lds
3 lg d N A ¢ 1T, —
5 dr” !“.‘“LZ -5l dy=0.
Since
zdx E,”I’&I:dx‘ Jﬂnrié':d'\.z _ ﬁj.(|5|:), ’Elld){:()

PP P B N { ;
i 12 15 ,d_( [ S
! dr

hence we (ibtaixz (2.5 ), exeH, so g(x>el,, it follows
, 1
Iy GO+ L pedt <0

[,,,.

i '7<>€ &J‘ “dux < p

e

Hence E (0) exists,
Lemma 3 If the conditions of lemma 2 are satisfied, then we have
L 5o (2.8)
£ = [ (x, :)dx+-—;)~—~)l (s, —adx=£,00)
: Za
Proof Since
‘_(;*{,_.iiflzdx =nndx=[np{-¢e&) dx= B8] (nge, +na¢ e)dx=(- /a)| {Cig + e, &
+(—if, +eendx= (- p/ar] Cie &, ~ ig, 5, Jdx
fey, —ig e, —lige, Jdx

*d‘(f{v\ Bla Ticd, ~ige Jdx=(fja)] Lie & +ike,,
: jd,\—:ia/}——f[ia,é,\,—iaxé,]dx,

=(Blaf U ies. ~is & —if e +is

hence
d - B d - . .
= dy d Ciee, —~iee, Jdx = it follows (2.6 ).
d“\. I n d X 2 ot d[ J ~ x éé\ ] \). ( () )
femma 2 are satisfied ., then we have

If the condition of

Lemma 4

— 70—
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"”“szrL”SEZs "é‘xnzl‘le,”gEB (2.7)

where the constants E, and E; depend on the morms  ||a], and e,

Proof In fact,by lemma 2
[ led*dx+afnlel*dx=E (0),

hence we have
|

‘_‘i'.ln!li2+'—2‘ﬁ||e[lz4 |E (0)] <l7 2+ I_za_!”

Lol «1E o

<‘—" 2+ B cen el + ey D, + 1E o)
i o 3 42 : P e oy
312(_4“’ et l‘llz leollZ H‘?vltL:*’ ‘a{zc i ()..Lz + 1E (0], (2.7

By Lemma 3 [ndx +ﬁi'i (eg, - e ydx=E (0), hence

Lz 9 1 ool + 2 ol fedax < B oot cptl, Bl
Substituting the above inequality into ( 2, 7 Y, we abtain
, Jldl . lal oy s
ledi S\l—z—‘ |E, (0)] hedy o+ 21 O el Nedi, +J~L—~ lady,

+ [E ()l |
Choosing & suitably small, satisfying % {F el

leli, <5 L——-‘ [E1(0))] +—;— Bleli, + ij ali, + 1E i3 =E
From (2,6), it follows,
Corollary | lell, <Ej
where E; is a definite cor;stant.
Lemma 5 If the conditions of Lemma 4 are satisfied, and assume
that ¢ (x) ¢ H?, then we have
i]”/:;}_ L, <E,, ” é‘/ii:[_:anéEs . ‘ (2.8)

where E, and E, are definite constants,
Proof By the equation n,+ §l¢li=0,it follows
Iy, <t B hecdy <48 ey ledi, <4FEJE, =E,
Differentiating (2,]1)with respect to t,then multiplying the resulting relation
by Z,taking the inner product and setting E =, we obtain
GE, +E —ane—unE E) = | ‘ (2.9

Taking the imaginary part of (2.9), we have

L LER <] IneE fax< |d el -2 Ol 13, + BN
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< la|E) c &0 fn R +HER )< e+ c,|ERR

By Gronwall’s inequality and the conditions of this lemma, it follows (2,8) .
Corollary 2 (LI TN 2P
where E_is a definite constant,
* Proof From (2,1) we have e, “Lr<_ e, ”L,*|a Hell nle. <Ee.
Coroltary 3 e, o, <Es
where E is a definite conston,

’

Proof By corollary 3 and the Sobolev inequality, we obtain it imm diately,
Lemmag If the conditions of lemma 5 are satisfied, and assume that n,(x )€ H',
then we have
b, < B (2.10)
where £. 18 a definite constant,

Proof Differentiating (2,2) with respect to x,and taking inner product with 4 it

follows
4 N ot " A
by v g e n) =0, 2.1
Since e F o= aE + o be For oo dhew from (0,115 it tollows
?C wu X W e H [A) Le 1L
! d i HR P i 15 R 52 [T R : H ‘/3 ! i} i " o, ( it w2
T; Li‘l- LR Ly = ¢ Lt Lo e Y “L:* HE L, RN EL.W (WL < i?'L2 HRLN ~ noap + ¢y .

By Gronwall's inegquality and the condittons of this lemma, it toliows (2,107,
Lemma 7 If the condinons of lemma ¢ are satisfied,and assume that &, (x) € H?,
then we have

i [I] n

M ™ 8 e, B (2,12
where £ is a definite constant,

Proof Differentiating (2,2) w-ih respect 1o x, it foliows

e L
N PO I N
i, - 41 I S N R YA 0
Since
4 O T T TR L S L N M EE O N
Lo 3 W et e i i D e A U T BL,

oiff (EE +2E E.)=const,
Aiferengating (2,3 with respect fe o and f,and taking inner product with T, setting
o T &, WE obtaim

.

> . v S . -3 .
({2 -+ o TR !l ;_,‘,.!-‘—H{_{“’

Taking the imaginary pamt of the above cquality, it follows

d i ‘ . o _
- : Loog / S LR R S P s , .
o =L i /7 Tode LT RS 1
Gf H
“ . N 0o e - e s R ; '
SR L e D) = Gl B A s e (0 e,y G ) e O
- ) | 2Ly R R w0
¢yl !E He DL 7 h “ ]Il.w) R AP

By Gronwalt's inequality, we obtain the boundnes of 72 i L this the lemma is pro od
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Lemma g If the conditions of Lemma 7 are satisfied and assume that ¢ (x)€ H*,
then we have

E AP T ST (2.13)
where E_ is a definite constant, . -

Proof Differentiating (2,1) with respect to ¢ twice,and differentiating (2,2) with

respect to 1, it follows

ielll +8l!v\')'— a (”I18+ 2,1181 + ’18,,) = 0 (2' 14)
n, +Ble, § +e8 +F.8 +6€,)=0. (2.15)
Setting n,, = N, ¢, = E, multiplying (2,11) by E. and taking inner product, we obtain
(GE +E ~a(Ne+2ne +nE) E) =0, (2.16)
Taking the imaginary part of (2, 16), it follows
]. d . 10 ] 1 [T i b . | By D4 -
Sa Bl S CIN L~ B L) -2 he e SO e L
cpCHERE AN =y (2,17

From (2, 15), it yields
ST Y op2 - o T 2 : 2 ERP -
i N &JL:" /)) e €+ fg,rE e 0 ii‘lLf;t: 3 ﬁ 1: 5 EyF 1EL: +OhEE, 15L:j
S .
Thus from (2,17) and Gronwall's ineguality, we obtain the boundness of e, ip e it

.y . iy
o

R 02 :
AL E LT e, L.

SO
follows 2,13,
Llemma 9 If the conditions of lemma 7 are sadsfied,and assume that ¢ (v) €H>
(h -2, then we have

DD sl + DY D

! x

L~ iDini « iDlelf < EL (2.18)
where E_ is a definite constant,

Proof As i=12, (2,18) is true, Now we suppose (2, 1&: is also true as k-1,
Differentiating (2, 1) with respecs t© 7 & tmes, differentiating (2,1 with respect to ¢

A -1 times and setting Din= N, D:‘E:z_ we have

iL, <X —aD! g =4, (2.19)
N+ DD jef=0 (2. 20)
Since
_ T Nt kot
D: (@27 :‘.gD(N = }_ ¢ ’;D;H‘ D[ g+/2Df’;‘2
IR
.

and by the Sobolev inequality, D! % i and D"l afe bounded.we can obtain
D onsy <Dt DY - DRe e Dl by,

Multiplving (2,19, by T ,and taking the inner product and the imaginary part, we have

{d ‘
e | CON G s iz e (2.21)
9 d i L, . &

Differentiating (2,10 with respect 1o 1 A -1 times and ~ one tine, seting D "Dgs=M,

it felow s
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iM,+M_-D¥'D (ney =9,
Muhiplying

(2.22)
(2.22) by M, taking the inner product and the imaginary part, we have
d |
L M <D D gl

2 dr

Ee IDE D+ 1< c(p |

DD e PR + M+ 1)
Se(D¥ e e M+ D (1 + M) .
By Gronwall’s inequality it yields

IM 0L, xconst, (2.23)
From (2,20), it follows ‘
IV i< D} "D e Fili < (D} 'Dyeffi ~ D} 'eD.e [ +1)<comst  (2,24"
Instituting (2, 23) into (2, 21) and being Gronwall’s inequality, we have
IS cons
Differentiating

(2.25)
(2.2) with respect to 1 k-2 times and x one time, we have
iD D [ <A ID; Dk P < e [Die i + 1) <const

(2. 23)0(2.24),

3.

From

(2.26)
(2.25)and  (2.26),it follows (2,18),

The Existence of the Problem (2 1)(2, 2)(2. 3)
We first consider the equations (¢2,1)(2,2) with the periodic initial conditions

I(‘ I:u: é‘O('\‘)‘ h i‘I:(x:’I()(X)’ _OO:‘X<:DO' (5 1
: 3. 1)
Yo (x=2D,n =g (&, n,nx=2D, D =n(x, 1), D 0. xER 120,
We apply the approximate solution '
! I3
elx, =) ali(ny w0, Al (x 0= Y b wixo (3.2
Jj=1 Jj=1
to approach the solution ¢ (x, 1), s (x,r) of the problem

(2.1)(2.2)(2.3), where
P, (0] is a basis, which is a system of the orthogonal eigenfunctions with periob 2D

satisfying —w" (x) = iw,,and the unknown functions ¢ (x, 1), n' (x, r) satisfy the follow -
ing integral relations,

(fgl — g —unels W) =0, '
{ (/"["f’ﬁ’&/ﬁ,, “’.J,'):O,' (j:1v2~,".,91)

(3.3
(0, x), W) =((X)ew,)y (R0, X)Wy = (M (X))
It is easy to see that the system (3,3) is an initial value problem of nonlinear odinary
system of the equations for the unknown coefficient a’}.(t),b j’ () by the priori integml

estimates which are analogous to § 2, we can obtain the uniform boundnesses of | Dk’ |,
(D&t , DDA |, |D¥De’ [ (k=0,1,2,++), by using analogous method in

(6],it 2is easy to get ;he local soluti:)n e(x,NEE 10, ¢
of the problem

i) Hx), n(-x, nHE L™ 0, 10, Hs»
(2,1)(2.2)(3. 1 on the interval [ 0, /,], where the time inteval length
depends on-the norms

ey ik ,and [ g . Due to the priori estimates in §2 , we
can obtain the following existence theorem of the global solution of the problem
(2.2)(3.1),

(2.1)
Theorem | If ¢ (x) EH*(-D, D), n,(x) EH ( =D, D) (k>>2), then there exisls
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the global selution ¢ (x, r),n(x, r) of the problem (2,1)(2.2)(3.1),
e(x, D€L0, T,H", n(x, ) EL (p, T, HY,
Theorem 2 The smooth solution of the problem (2.1)(2.2)(3.1) is unique,
Proof In fact, suppose that there are two solutions, ¢, (x, 1), 7, (x, 1) and & (x, 1),
n, (x, 1y, Let
E(X, 1) =g, (X, 1) — gy (X, 1), R(X, ) =R (X, 1) =N (X, 1),
Thus from (2,1)(2.2),we have
g, +&, ,~a(ng—n¢) =0
{ ar+ B e, P fey iD= 0, (3.4)
¢, =000, L7 0.
Since
CEry e i“?]iz* leo = 2L - ‘ : :
multiplving the first, second equality of (3,3 by ¢.n vcpedines cand wking the inner
product, it follows
(g, + & — Wie, — amyg8) =0, (N, + B(&,8 e EtEE HEED ) =0, (3.5)

Taking theimaginary part on the first equality of (3,4), we have

d ]
et < o (< g e+ el e e < Cini + felt). 3.6)

dr
From the second equality of (3. 3),it yields
‘SL a2 < fﬁ[[il | ._1_.(“ ||l+ !1)1‘f2) Hg “ o_]:_( ii 2y “n\z)
g ML= AL e o 5 Clle i, + M)+ e 5 Clelli,+ 17

! l el > i l ' 4
et~ Cle i« Bl ey fuag ¢ oy B2+ 1202,

<o Ulelif + Il + e I2) (3.7)
Differentiating the first equality of (3,4) with respect 1o x,then taking r the inner pro-
duct with ¢, we have

(& I8 ot 10 (R + e+ Mg+ MyEye) =0,

Xt

Taking the real part of the above equality, it yields

B | 1 1
e < allly e el e dec )+ Ja s 5 Clrli + e )

+ a | ”nzx

vl e )< esTle I e+ I s In 23+ e0 3.8)

Differentiating the second equality of (3.4) with respect to x, it follows
n, +.B[5xx6: FEE gl FEEHEE bt Gt BE )= 0 .
Multiplying the above equalition by n_and taking the inner product, it follows
(N, + B (8, 6+ 68 + 6, 8+ E, 8 + 8 (+EE  FELL), M) =0,
Since
lew e B e+ felley Do b+ Valing o fle lo < eyCle, I+ Il + |
then we get

ellp).

2
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< e Ule 2, s In s In i+ Teli Do, 123 - (3.9)"

Differentiating the first equality with respect to 7, it follows

Ia” + 6‘”_\_ - Cln,g’ = wngy iy, & - ansE, = (e

Taking the inner product with ¢ on the above equality, and then taking the imaginary
part, we get

oy
ta

d | TR i 2 i12 | " YN - 3 2
g le < esCln i+ lle, 12+ Il + el J<es0B* | < la]? -

1 M2+ e
= Anlig+ e oo Clec, ~ e L+ g+ le ). (3.10)
From (3,5)—(3.10), we have

a
dr

ik}

i,

el = fe, i+ e L+ In = n 083 Cllef? « Gl + le, 1, =in i i,

By Gronwall's inequality and zero initial conditions, we have
E (X, N=N(X, D=0
Now we consider the initial value problom (2,1)(2,23(2.3:,By using the uniform
estimates of the solution of the problem (2,1)(2,2)(3,1) for D,as in (73, we can
prove that the solutions of the problem (2,1302.21(2.3) as D-»oo, Thus we have the
following theorem,
Theorem 3 If the conditions of Theorem 2 are satisfied .then there exists a unique

&

global solution for the initial value problem (2,1:—:2,3:,
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