The Mixed Bitsadze-Lavrent'ev-Tricomi Boundary Value Froblem*

Jonn M. Rassias

(The American College of Greece Deree College, Aghia Paraskevi, Attikis, Greece)

Abstract. It is well known that F.G. Tricomi (1923) is the originator of the theory of boundary value problems for mixed type equations by establishing the Thicomi equation: $y \cdot u_{xx} + u_{yy} = 0$ which is hyperbolic for y < 0, elliptic for y = 0, and parabolic for y = 0 and then applied it in the theory of transonic flows.

Then A.V. Bitsadze together with M. A. Lavrent'ev (1950) established the Bitsadze Lavrent'ev equation; $sgn(y) \cdot u_{xx} + u_{yy} = 0$ where sgn(y) = 1 for y > 0, z = -1 for y < 0, z = 0 for y = 0 with the discontinuous coefficient sgn(y) of u_{xx} , while in the case of Tricomi equation the corresponding coefficient y is continuous. In this paper we establish the mixed Bitsadze Lavrent'ev Tricomi equation

 $Lu = K(y) \cdot u_{xx} + \operatorname{sgn}(x) \cdot u_{yy} + r(x, y) \cdot u = f(x, y)$, where the coefficient K = K(y) of u_{xx} is increasing continuous and coefficient $M = \operatorname{sgn}(x)$ of u_{yy} discontinuous, r = r(x, y) is once continuously differentiable, f = f(x, y) continuous.

Finally we prove the uniqueness of quasi-regular solutions and observe that these new results can bbe applied in fluid dynamics.

The Mixed Bitsadze-Lavrent ev - Tricomi Problem

Consider equation

(1)
$$Lu = K(y) \cdot u_{xx} + sgn(x) \cdot u_{yy} + r(x, y) \cdot u = f(x, y)$$

in a bounded simply connected region $G \subset \mathbb{R}^2$ by the curves: A piecewise smooth curve g_0 lying in the region $G_1: x>0$, y>0 and intersecting the line y=0 at the point B(1,0), and the line x=0 at the point C(0,1), a smooth curve g_2 through B meeting a characteristic g_1 of the equation (1) issued from

^{*} Received Nov. 11. 1985.

AMS Subject Classif. No. (1980): 35 M05.

- 77 -

A(0,0) at the point P_1 in the region $G_2: x>0$, y<0, the characteristic curve g₁, a smooth curve s₂ through C meeting a characteristic s₁ of the equation (1) issued from A(0,0) at the point P_2 in the region $G_3: x<0, y>0$, and the characteristic curve s_1 ([1],[3]).

It is clear that we can consider equations

$$\begin{aligned} & (c_1) \ g_1 \colon \int_0^y - K(t) \cdot dt = -x & \text{in } G_2, \\ & (c_2) \ g_2 \colon k \int_0^y - K(t) \cdot dt = x - 1 & (k \ge 1) & \text{in } G_2, \\ & (c_3) \ s_1 \colon \int_0^y \overline{K(t) \cdot dt} = -x & \text{in } G_3, \\ & (c_4) \ s_2 \colon \int_0^y \overline{K(t) \cdot dt} = h \cdot x + 1 & (k \ge 1) & \text{in } G_3, \end{aligned}$$

such that (c_1) and (c_3) satisfy the characteristic equation

(2)
$$K(y) \cdot (dy)^2 + sgn(x) \cdot (dx)^2 = 0$$

of (1), while (c_2) and (c_4) satisfy the expression $K(y) \cdot (dy)^{2} + sgn(x) \cdot (dx)^{2} > 0$. (2)'

We assume the following conditions:

(3) K = K(y) is an increasing continuous function in \overline{G} (= closure of G) and $M = \operatorname{sgn}(x)$ is discontinuous in \overline{G} such that M = 1 for x > 0, = -1 for x < 0, = 0for x = 0, and $K \cdot M < 0$ if $x \cdot y < 0$, $K \cdot M > 0$ if $x \cdot y > 0$,

$$(*) \begin{cases} G_1: \ K(y) > 0, y > 0; \ \text{sgn}(x) = 1 > 0 : \text{elliptic} \\ G_2: \ K(y) < 0, y < 0; \ \text{sgn}(x) = 1 > 0 : \text{hyperbolic} \\ G_3: \ K(y) > 0, y > 0; \ \text{sgn}(x) = -1 < 0 : \text{hyperbolic} \\ AB: \ K(0) = 0 : \text{sgn}(x) = 1 > 0 : \text{parabolic} \\ AC: \ K(y) > 0 : \text{sgn}(0) = 0 : \text{parabolic} \\ A: \ K(0) = \text{sgn}(0) = 0 \end{aligned}$$

$$(4) r = r(x, y) \in C^{1}(\overline{G}), f = f(x, y) \in C^{0}(\overline{G}),$$

$$(5) r \leq 0 \text{on } g_1 \cup s_1, 2 \cdot r + x \cdot r_x + y \cdot r_y \leq 0 \text{in } \overline{G}_1.$$

deness on g_0 ", where \overline{G}_i (= closure of G_i) (i = 1, 2, 3).

In addition, we assume boundary condition

(6)
$$u = 0 \text{ on } g_0 \cup g_2 \cup s_2.$$

The Mixed Bitsadze-Layrent'ev-Tricomi Problem or Problem (M):

finding a solution u = u(x, y) of (1) satisfying (6). consists

Theorem, Assume domain $G \subset \mathbb{R}^2$ described above. If we assume conditions (3-6), then Problem (M) has at most one quasi-regular solution u. **Proof.** Suppose u_1 and u_2 are two solutions of (1) satisfying boundary condition (6) (i.e: $u_i = 0$ on $g_0 | |g_2 | |s_2|$, i = 1, 2).

Denote $u = u_1 - u_2$. Claim that

(7)
$$u = 0$$
 (or $u_1 = u_2$) in G.

To prove (7) we apply the classical energy integral method in each region G_1 , G_3 separately (because Green's theorem can not be applied in the whole region $G_1 \cup G_3$ because of the discontinuity of the coefficient $M = \operatorname{sgn}(x)$ in $G_1 \cup G_3$), and in $G_1 \cup G_2$ (because of the continuity of the coefficients K = K(y) and M = 1 in $G_1 \cup G_2$), and then the maximum principle for elliptic and hyperbolic equations.

We note the integral expressions

$$(8) 2 \cdot (lu, Mu)_{G_j} = 2 \iint_{G_j} lu \cdot Lu \cdot dx dy (j = 1, 3),$$

$$(8)' \qquad 2 \cdot (lu, Mu)_{G_1 \cup G_2} = 2 \cdot \iint_{G_1 \cup G_2} lu \cdot Lu \cdot dx dy,$$

w here

(9)
$$lu = \begin{cases} x \cdot u_x + y \cdot u_y & \text{in } \overline{G}_1, \\ x \cdot u_x & \text{in } \overline{G}_2, \\ y \cdot u_y & \text{in } \overline{G}_3. \end{cases}$$

It is easy to see that ([2])

$$(10) \quad 2 \cdot (lu, Lu)_{G_1 \cup G_2} = -\iint_{G_1} (2r + x \cdot r_x + y \cdot r_y) u^2 \cdot dx dy$$

$$-\iint_{G_2} (r + x \cdot r_x) u^2 \cdot dx dy + \iint_{g_0} N_1^2 (x dy - y dx) \cdot (Kv_1^2 + v_2^2) ds$$

$$+ 2 \iint_{CA} y \cdot K \cdot u_x u_y \dot{p}_1 \cdot ds + \iint_{G_1} y \cdot K'(y) \cdot u_x^2 \cdot dx dy$$

$$+ \iint_{G_2} (-K \cdot u_x^2 + u_y^2) \cdot dx dy + \iint_{g_1} (x \cdot K \cdot u_x^2 v_1 + 2x \cdot u_x u_y \cdot v_2 - x \cdot u_y^2 v_1) ds$$

$$+ \iint_{g_2} N_2^2 (x \cdot v_1) (K \cdot v_1^2 + v_2^2) ds + \iint_{g_1} r \cdot (x \cdot v_1) \cdot u^2 \cdot ds = \sum_{n=1}^{g} J_n^{(12)},$$

where N_i (i = 1, 2) are normalizing factors such that

(11)
$$u_x = N_1 \cdot v_1, u_y = N_1 \cdot v_2 \text{ on } g_0,$$

(11)'
$$u_x = N_2 \cdot v_1, u_y = N_2 \cdot v_2$$
 on g_2 ,

(which are possible due to (6))

and $v = (v_1, v_2)$ in the outer normal vector on the boundary of $G_1 \cup G_2$. Similarly

(12)
$$2(lu, Lu)_{G_3} = -\iint_{G_3} (r + y \cdot r_y) \cdot u^2 \cdot dx dy + \iint_{G_3} (y \cdot K)' u_x^2 + u_y^2 dx dy$$

 $+ 2 \cdot \int_{AC} y K \cdot u_x u_y \cdot v_1 \cdot ds + \int_{s_2} N_3^2 \cdot (y \cdot v_2) (K \cdot v_1^2 - v_2^2) ds$
 $+ \int_{s_1} (2y K \cdot u_x u_y \cdot v_1 - y \cdot K \cdot u_x^2 \cdot v_2 - y \cdot u_y^2 \cdot v_2) ds + \int_{s_1} r(y \cdot v_2) u^2 \cdot ds = \sum_{m=1}^6 J_m^{(3)},$
where N_3 is a normalizing factor such that $u_x = N_3 \cdot v_1$, $u_y = N_3 \cdot v_2$ on s_2 ,

(which is possible due to (6)) and $v = (v_1, v_2)$ is the outer normal vector on the boundary of G_3 .

It is clear now that

 $J_1^{(12)} \ge 0$ because: $2 \cdot r + x \cdot r_x + y \cdot r_y \le 0$ in \overline{G}_1 by (5),

 $J_2^{(12)} \ge 0$ because: $r + x \cdot r_x \le 0$ in \overline{G}_2 by (5),

 $J_3^{(12)} \ge 0$ because: $x dy - y dx \ge 0$ on g_0 by (5) and $K = K(y) \ge 0$ on g_0 by (3),

 $J_4^{(12)} + J_3^{(3)} = 0$ because: v_1 (on AC) = $-v_1$ (on CA),

 $J_5^{(12)} \ge 0$ because: $K'(y) \ge 0$ in G_3 , and K = K(y) is assumed increasing in G_4 by (3),

 $J_6^{(12)} \ge 0$ because K = K(y) < 0 in G_2 by (3),

 $J_7^{(12)} \ge 0$ because x > 0 on g_1 and K(y) < 0 on g_1 by (3), $v_1 < 0$ on g_1 (by

the geometry of g_1), and $\begin{bmatrix} K \cdot v_1 & v_2 \\ v_2 & -v_1 \end{bmatrix} = -(Kv_1^2 + v_2^2) = 0$ by (2),

 $J_8^{(12)} \ge 0$ because: x > 0 on g_2 by (3), $v_1 > 0$ on g_2 (by the geometry of g_2), and $K \cdot v_1^2 + v_2^2 > 0$ by (2),

 $J_9^{(12)} \ge 0$ because: $r \le 0$ on g_1 by (5), x > 0 on g_1 by (3), and $v_1 < 0$ on g_1 (by the geometry of g_1),

 $J_1^{(3)} \ge 0$ because: $r + y \cdot r_y \le 0$ in G_3 by (5),

 $J_2^{(3)} \ge 0$ because: $(y \cdot K)' = K + y \cdot K' \ge 0$ in G_3 . K is increasing in G_3 by (3), and $K \ge 0$ in G_3 by (3),

 $J_4^{(3)} \ge 0$ because: y > 0 on s_2 by (3), $v_2 > 0$ on s_2 (by the geometry of s_2), $K \cdot v_1^2 - v_2^2 \ge 0$ by (2)',

 $J_5^{(3)} \ge 0$ because: y > 0 on s_1 by (3), and K(y) > 0 on s_1 by (3), $v_2 < 0$ on s_1 (by the geometry of s_1), and $\begin{vmatrix} -K \cdot v_2 & K \cdot v_1 \\ K \cdot v_1 & -v_2 \end{vmatrix} = -K(Kv_1^2 - v_2^2) = 0$

by (2), and

 $J_6^{(3)} \ge 0$ because: $r \le 0$ on s_1 by (5), y > 0 on s_1 by (3), and $v_2 < 0$ on s_1 (by the geometry of s_1).

Therefore, by adding (10) and (12) and by taking into account the above results on the integrals

 $J_n^{(12)}$ $(n=1, 2, \dots, 9), J_m^{(3)}$ $(m=1, 2, \dots, 6)$ we conclude that u=0 on the boundary of G. Thus by employing the maximum principle we prove (7).

Refernces

- [1] M. A. Lavrent'ev and A.V. Bitsadze, Dokl. Akad. Nauk SSSR 70, 1950, 373.
- (2) J. M. Rassias, Comptes rendus de l'Akadémie bulgare des sciences, Tome 36, Nº 12, 1983, 1491.
- [3] F.G. Tricomi, Atti. Accad. Naz. Lincei. Vol. 11, 1923, 133.
 Permanent Address: 11, Dervenakion Str., Daphne 17235, Athens, Greece.