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Carleson s Proof of A Remarkable Equation®

K. L. Chung
(Stanford University, U. S. A.)

The theorem below has a very interesting history worth recounting.ln 1964
or 1965 I was working on the boundary for Markov chains during which I
found an integral equation which played an important role. It resembles a ren -
ewal equation and has the intuitive content of a last exit decomposition, It
was not hard to solve it in a weak sense but the strict result suggested by its
probabilistic meaning baffled me. Two notes on this equation were published
in the C. R. Acad, Sc. Paris (communicated by Paul Lévy), tome 260, 1965.
The problem has a deceptive simplicity and at least two wrong proofs were
sent to me, I gave several lectures about it, including one in Budapest when
I visited Rényi in 1967. Eventually the problem was solved by Harry Kesten
who turned it into a large question of hitting probabilities of single points (Me
moir o) the Amer. Math.  Soc. No., 93. 1969). But his proof is not accessible
to people without considerable background in probability theory whereas the
original problem was posed as an analytic one. Thus I asked Lennart Carieson
whether he could prove it more directly. I recall that he replied al once say
ing that he was interested in the problem because it resembled something he did
in another context, Soon after he sent me a complete and c¢ ncise proof, I
spent some time making it a little easier for the average reader and the result
is the exposition first published here, Prior to the solution an incorrect one
was published in Zeitschr, fur Wahrschein, ,vol, 8, 1967, with acknowledgment
of errer in vol, 11, 1968. I edited that paper and the referee was S, Watanabe,
Neither of us caught the mistake which was due to the failure to check domi-
nated convergence (a most common mistake which has probably infected a non-
trivial portion of the mathematical literature). P, A, Meyer found the mistake.
After I showed him Carleson’s proof in my expgsition he had a pupil of his write
up a French version of it which was published. However, Carleson as well as
1 thought that the following version was more readablie,ln publishing it here
I hope that it will give Chinese readers an opportunity to study a simple-look-
ing yet hard problem solved by penetrating analysis, and at the same time to
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appreciate the interaction between various disciplines in mathematics ,

Carleson s Proof

Let o be a decreasing and right continuous function on (0, oo )such that
1
a0 +)=c0, [ oCr)di<oo,

It is known that there exists a o-finite measure E on [ (¢, o) such that for

almost every x (Lebesgue measure) we have
(1) focx-dECH= 1.

Furthermore for every x>0,

/

(1) [ocx= aECH<1,

(we shall need only the finiteness of this integral]. It follow from (1 ) that
the measure. £ .is without aiom.
Theorem. The equation (1) holds for every x> 0.
The theorem was proved by Kesten by probability methods, The following
proof is due to L, Carleson (March 31, 1969) .
Integrating (1) we obtain, if 0 < a<p<Tx,:
[':: de_f );a(x - 1)YE@W=5b- a.

Transform the integral into

TECOH[ e (x - tydx= [ ~dEGo-) [ oy + x - x)dx.
S . xo—b Joa X, b

E(x))-E(x,- v) , for 0 < v<x,,

E(xy), for y>x,;

uy) = {
and put g(x)=9¢0 for x< 0. We then get
oo b
(2> [ du[ oy - t)dr=b-a.
0 1a
Thus for every 6> 0, .
/ I LR
@2 1—_[ Od}l(,l )d_foa(y rHdr.
For any fixed p> 0, if ¥ >p, then for sufficiently small §,
1pd Vi
5 e - Ha<o-H<sE)

We use this domination to conclude that
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. 26 1 ' o
(3) nm_[pd,,(y)—d_[oa(y - t)dtz_[po()/)da(}’) ,

740
since ¢ can be discontinuous only on a countable set to which E assigns zero
measure. Therefore if we can prove that given any ¢> (0, there exists a p> 0

such that
. 4 1 .
(4) lim ([ du(y )0y - trar ¢
6.0 0 o
then we shall have from (2') and (3) .

feduy =tim[’oyrducyr=1.

Pyl
This is the desired equation (1) in the new notation, for x = x,. The remain-
der of the proof is to establish the underscored proposition above .
Note that we have as 6| 0,
s
o(OuG [ odu) >0,
also that for every 6 0 and y.. 0.

] 8 o
Jda (o )SJ"OU( tHdr, _16-.[00()) -t )dté—lé—_foo( r)dr.

These relations will be wed many times below without comment,
Case 1. Suppose that

lim—l—[da( t)yde<ec
5,000(8) 70 )
Then there exists A< oo such that
3
[octrar<aso),  for o<1
We have then if xg—;—,
x 2x
xo( x)g_foa( ¢ )dt_<,.f0 o ()< A2x02x),

so that _
o (x)<2A40(2x).
For 0 <26<p<<1, we have

20 106 26 19 26 ‘
[, aur[ oy - O] "dur 5[ o< "du(y) a0 @)

T A(26)0(S5) <241 (20)0(20);

0 19 4 y [
[ ducn 5[ oy - <[, o(Zrdur)<24[ o(¥)dur) .

Hence both integrals can be made <¢ by choosing p sufficiently small, and the
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theorem is proved in t s case,
Case 2,

lim—L—(’s(r)d fim—L__ [%(r)a
lim gy ] a7 <o =iy [ od

There exist A< oo and '§; | ¢ such that for all ;.

61’
(5) [ oCHdi<Asio @) .

For an arbitrarily large B >34, put

n
m,=sup{n: n<J,; ff(t)dC>B}.

N
naln)
If o<c<]1, then

1 cd 1 o, 4
EZ]SZEgjyffo a( t)dtfgcdﬁ7(5ﬂ , (A<

d,
consequently we have nig%éi<—3#, but 5> ¢ by the hypothesis of the case.By

definition we have

¥
(6) | o C1)dr<Byo(¥) for n<y<d,
while the right continuity of ¢ implies

() [lecorar=Broam .

It follows at once that

o(n)<202n,) .
Until further notice we shall omit the index i from », and J,, We have then

21 1 2n )
[ ancrLlo(r - O "duCy)Bo e <2Buzmo@n)

Next, for 2p<y <4é we have y/(y -n)< 2, so that

Y
y -

ir? 1 Y-n
oy - Doy -mE5 o 1 e CHdi

L
5 5] odi<2B0(¥)

by (6 ) . Hence
[ auri[TaCy = rar<zBf’ a(yrducr)
an nto - 2n :
Combining these we have
é irn g )
(8> [ducr oy - Hdr<aBl v (y)du(y) .
] "0 o

Finally, for each i we define two sets as follows;
C,={yio,<y<ps; o(¥y -n)<20(>)], D;={y:6,<y<ps a(y-n)>20(r)} 3
thus (6,, p)=B,JC,. Omitting the index i from C, D,, », J, as before , we

have since 35<d ,
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2
(@) [aurH o0y - Oar or-mann<af 0 A< o nanm.

Let
=inf D, w,=(Ay~ny Ag+nl ,
A, =inf(D o)) , o, =04 ~n, A, +nl ,
=inf(D (wyUw,)), w,=[4,-n, L,+n],

and so on, until an Index L such that
L<
(10D DC U e

Since 4;_,>>/4,+#n, we have Lg[%]+ 1.
Lemma | . Forany a>d >¢, we have

a+ d 2d
du(y)H)<
f“ “er fo(t)dt
0

Proof. We have from (2) ,
= a~d N a+d y~a+d a+~d d
2d=[ du(y)[" oy-nar=[" e[ " awdr=l T duonf s,
vy Y oa-d doa Joyea-d Jow g

The lemma follows .

Now we have, by (1g) and Lemma ] .

, L pir L
f du(y)if]a(y—t)dtgz [‘ du(y)a(A —2m) S Zo(/’.J—Zn) .
"D o S= [ o(rydr J 70

Observe that
g(A —2m)zo(h,— ) =20 (A,) 220, ,~ 21
where the middle inequality follows from the definition of A, and the right

A
continuity of ¢. Hence in the sum ) above, the terms with even {odd] in
i=9 ) R
dices from a geometrically decreasing series with ratio-. 1 2 and so their sum

is bounded by twice its first term, Thus, noting that 4,>3p,

av [ aunH Lo - Dd My ey oG, - onotn)
|" g( 1)ds (5t ydr

Collecting the estimates (8 ), (9 ) and (i1), we obtain, rUestoring the ind-
ex { and using (7)) .
0 1" — o 16
.fudu(y)z[oa(y -0dr<2 B[ o (y)du(y)+2f 0 (A + Y
Having given ¢> (¢, we choose first B large, the p small and finally i—x0(d, yO)
to achieve the required relation (4 ). Hence the theorem is proved in this case,

é

Case 3, l()lngéa(o) [O([)dl:uc
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Define the sets C and D as in Case 2 but with », and ¢, replaced by » and
3n. The previous estimates (9 ) and (11) remain valid without any change so
that we have
[lauonfocr - 0rai<af o5y ducyy+ 710020
a( t)dr

Under the hypothesis of this case the second term on the right tends to zero as
ny 0, while the first one can be made<¢ by the choice of p. Therefore (4)
will be established if we show that

. 3n 17
an lL“.rodu(y);;()a(y—t)dt:()

ny0

Now the integral above is bounded by

3n 107 1{ 3
Jodu(m—”foa(r )dr=~”f02(y>du(y>,

where
y
Z(y)=f o(r)dt,
0

Therefore it remains only to prove the following.
Lemma 2 lim ”f).'(y)du(y)— 0.

(LY

Proof. Write also

y
S(y):fOZ(t)du(t) .

Since ¢/X is decreasing we may integrate by parts below.

> _fecCe) oISy = a(t)
1= oo =f Fegrcomz -imtG [ i wa FE)

The last-written limii is zero since

g(t) ([’

d .

T 02."(5) u(CsH)<o(t)HulCr)
Now if the lemma were false, then there would exist A> 0 such that

Sy =in for 0<py<1.

We should have then

[5wa(E2) > - B ) »og (LB [ 9 g sielD

+Alogr (0 ) =co
This is absurd and the lemma is therefore proved.

Remarks We have

1 .1 y
11m Ef(n) -2 duy) =1nlng—”f0d)foo(x Ydu(x)=10.

124
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Hence Lemma 2 is equivalent to

X)) (" I
1 Xy =
(12> im . fo dE(Y¥ )=9.
ne0
Proposition The theorem is equivalent to the following analogue of (12).

(13) mir%—)—_[x“"ds(x): 0.

X
nvy0 °

where the lower limit may be replaced by the simple limit.
Proof We have '

Xo+n x,
r E(xg+n-x)dE(x)=x,+n, f Z(xy~ x)dE(x)=x,.
o 4

Hence
.\'”1 ; 1 Xy +n ) B
(14) _fo—;lE(x°+t7—X)—Z(x0—X)}dE(X)+7 E(xg+n-x)dE(x)= 1.
Since
X, +n=x

L{Z(xn+n—x)—2(xo—x)}:if o(Ddr<o(x,— x)
n N x, -x

.\'(I
and J o(x,- x)dE(x)< 1, we have by dominated convergence,

0

n . +n
1 —_[U a(xo—x)dE(x)=l”1?3—}7£'0 Z(xy+n-x)dE(Xx) .,

Is is easy to see that condition (13) is equivalent to the last-written limit
being zero,

June 25, 1969
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