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Abstract Let A,={1,2,+,n} and let % ={B,, B,, *+, B,} where B,, B,, <,
B, are subsets of A, each of size m. @ is said to cover all the triples (i, j, k),
1 <i<j<k<n, if for each triple set {i, j, k} there exists a r, 1 <r<r, such that
{i, j, k} CB,. Denote by V(m, n) the minimum possible cardinality of such a

system @ . It is shown that if '-rr%>—z—, then V' (m, n) is a function of the fract-
2

ion —'S only and the values of V(m, n) are determined for all m, » with %) 3

The value of V(m, n) for %"—<% is also discussed.

| . ‘Introduction

It is not unusual that one needs to analyze great number of data.One of the
useful methods to do sois to divide these data into a number of classes and this
process is called partition. Pansystems methodology, dealing with large scale
system, studied ihe so called partitions thoroughly and introduced the concepts
semi~equivzilence partition and panpartition to cope with undistinct partitions,
that is two different classes may possibly intersect each other. Both semi-equiv-
alence partition and panpartition investigate pansystem whole-part relations and
properties of certain collections of subsets of a given universe. In much the
same way, pair covering systemsﬁljdiscuss a special kind of collections of subs-
ets of a given universe. .

An (m, n) pair-covering system is a collection of subsets of A, say @ =

{B,, B,, =+, B,}, each of size m and for any pair set {i, j} CA, there exists a
1( 1 <r<r) such that {/, j} CB,, where A,={1,2,+-, n}. Denote by N(m, n) the
minimum possible cardinality of an (m, n) pair-covering system 3, M. K. Fort

Jr. and G. A. Hedlund determined the values of N(3, n) exactly for ail nESj.

Their results have been further extended to a more general function by H. Han-
ani’®d, Y.Shiloach, U. Vishkin and S.Zaks determined the values of N(m, n)
for all m, n with %}% We present their result here as it is needed in the

proof of theorems of this paper.

* Received Mar, 9,1983.
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Theorem l“j If m;}%, then N(m, n) is a function of % only and
3 if%<%<1 ,

s3 m 2
4 1f5 < n< 3 ’

N (m, n)= 5 m_3
5 1f'9_<_,7<_5_ ’

iS5
6 lf2<n<9

An (m, n) — pair covering system can also be defined as a collection of subs-

ets of A, of size m, say 8 ={B,, B,, «-, B}, satisfying; (a) 4;}B,:A,.;
(b) ((UB)*= UB. a

From this definition, we can see that pair covering systems deal with a cer-
tain pansymmetry, that is, the union of the embodiments of a class of subsets
is equal to the embodiment of the union of these subsets. By extending the
concepts partition, panpartition and pair covering system, this papes is devoted
to triple covering systems,

Definition! An (m, n)—triple covering system #((m, n) —t.c.s) is a colle-
ction of subsets of A,, say #={B,, B;, *-+, B}, each of size m and for each tri-
ple set {i, j, k} CA, there exists a (1 <s<r) such that {i, j, k} CB,, where
A,={1,2,%, n}.

# is a minimum (m, n) —t,c.s. if there is no other (m, n) ~t. c.s. with smal—
ler cardinality. The cardinality of a minimum (m, n) —t.¢.s. is a function of
m and n only and is denoted by V(m, n).

The value of V(m, n) has also been investigated by many authors. W.H.
Mills determined the value of V(4, n) for n7(mod12), and R. G. Stanton
proved that there is an obvious lower bound L( 4, n) such that for infinite
number of n=7(mod12), V(4, n)<<L(4, n)+ 1, This paper discusses the val—
ue of V(m, n) from another viewpoint and following results are obtained.

2. Main Results

Theorem 2 If —’;n %, then V(m, n) is a function of the fraction % only
and
S P
Vim, n = 5 .i-%<%<—i" ,

02 -m 5
6 1f3 < - < 5
Theorem3 If - =~—§ . then
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(6 if m=4k, n=6k
Vimm =\ m—dk+2, n=6k+3
where k is any positive integer.

This theorem also asserts that V(m, n) is not a function of the fraction %

e m_ 2
only 1f7—3.

3. Proof of Theorem2

3.1 On Lower Bound
Lemma | a) Vim m>4, if —<1,
b) V(m, n)>5, if —
c) Vim, n)y>6, if
4 Vim m>7, if <
Proof a) If V(m, n)<4, Let #={B,, B,, B;} be an (m, n) —t.c.s. where
%< 1. Obviously, at least two of Bjs are different, say B, #B,. Let x, €B, - B,,

3

I

b

b

3
BYNEN] PN

x,€ B, - B,, x; €A,- B;, the triple set {x,, x,, x;} is not covered by any of B.

b) Otherwise, there is an (m, n)-t.c.s. 4={B,, B,, B, B,}, where %<%
Then the ave?zge number of occurrences of an element in the Bjs is 4m/n< 3.
Thus there is at least one element belongs to exactly two of Bjs, say 1 €B, "B,
According to the definition, this implies that g ={B, —{1}, B,—-{1}} is an
(m-1, n-1) - pair-covering system, which contradicts to theorem 1.

In addition, we proved that if 2 ={B,, B,, «-, B,} is an (m, n) —t.c.s., then
every element of A, belongs to at least three of Bjs.

c¢) Otherwise, there is an (m, n) —t.c.s. #=1{B,, B,, -, Bs} for <——. The
average number of occurrences of an element in the Bs is 5m <25< 4. Thus
there is at least one element bPelongs to exactly three of the B,s Assume this
element is x and it occurs in B;, B,, B;,. Then equations

B, UB; = A, i+j, i,j=1,2,3

must hold,

Otherwise, suppose B, UB,#A,. Let

acA,~B UB,, be A,-B,, it is quite obvious that the triple set {x, a, b} is
covered by none of the B,’s (i=1,2,+,5). A contradiction.

Let C,=B, -B,, C,=B,-B,, then |C, |-|C21>—-n and B, DC, |JC,;.Thus

IB NB, - le—IA—<C UCy) - By l—IA -B, |>2n,
e, Uc, LB, B, - B | =[ €, | +] €, | +| B, NB, - B, |>2n.

Clearly, any element of C, xC,x¢RB. B, ~B,;) is covered by none of B,,
B,, B,.

smce[B,.|:|B,|=m< n, let u€C,|C, (B, \B,-B;) ~B,, v€ C, UC, (B, N

- B;) - B;. Without losing generality, suppose v €C,, then it is necessary that

— 201 —

© 1995-2005 Tsinghua Tongfang Optical Disc Co., Ltd. All rights reserved.



u€B, and B, C, (B, (B, - B,). This implies | By NC, |<4-n. If € C,, with the
same discussion, we have |B,NC, |<%n, which contradicts the fact that | (B, |
B;) NC, | =] C, |>%n. If »&C,, suppose »€C,, let w be an element of B,\B,—
B;, it is obvious that {u, », w} is covered by none of the Bs (i=1,2,+,5).

d) Ozherwise, let #={B,, B,, +-, B} be an (m, n) -t.c.s. for —n"l<-32—
The average number of occurrences of an element in the B/s is 6m/n<4. Thus
there is at least one element occurs exactly in three of the B/s. Let these three
B's are B,, B,, B,, with the same discussion in c¢), the equations

BB, =A, i*j, i,ij=1,2,3
must hold.

But the total number of occurrences of elements in B, B, B, is 3m<2n.Thus
there is at least one element occurs in exactly one of B;, B,, B;. Suppose this
element occurs in B,, then B, JB;#A,. A contradiction,.

3.2 On Upper Bound

Lemma2 V(m, n)>V(km, kn) for any positive integer k.

Proof Suppose #={B,, B,, «, B,} is an (m, n) —t.c.s. and let C,, C,, -,
C, be a partition of A,, such that |C,|=k for i=1,2,+-,n. It is obvious that
B={B,, B, »+, B} is a (km, kn) —t.c.s. where

B = UC, (i=1,2,%0).
j€B,

Lemma3d Vim n)<4 if %)—Z’—

Proof It is obvious that V' (3, 4) = (4) = 4 and it follows from lemma 2
that V(3k, 4k)< 4. If m=3k+ 1 (m=3k+2), then n<[i§—mj:‘4k+ 1 (n<dk +2).
Suppose @ ={B,, B,, B;, B,} is a (3k, 4k) -t.c.s., it is easy to prove that
#’={B], B, B;, B}, #”"={B], B}, B}, B} are (3k+ 1, 4k+ 1)-t.c.s. and (3k+
2, 4k+2) —t.c.s. respectively, where B/ =B, | J{4k+ 1}, B/=B/ | {4k+ 2} (=1,
2,3,4). |

In fact, we proved that for any positive integer r, V(m+t, n+ 1)<V (m, n.

Lemmad Vim n)< 5 if %}%- Proof Llet B, ={(1,2,3,4,5}, B,={3,4,5,
6,7}, B,=1{1,2,3,6,7}, B,={1,2,4,6,7}), Bs={1,2,5,6,7}. It is easy to prove
that # = {B,, B,, «, Bs} is a (5, 7)—t.c.s. and it follows from lemma 2 that
V(5k, Thk)< 5.

If m=5k+ 1, then n<<(Lm)=7k+ 1, if m=5k+ 2, then n<[£m)=7k+2.
As we have shawn V(m+1t n+0)V(m, n), it follows that V(5k+1, 7k+ 1),
V(sk+2, Thk+2)<5.

If m=5k+3, then n<[J5—m]=7k+4. Let B, =(1,2,¢¢,m}, By={n—-m+ 1, <o,
ny, By={1,2,ec,n=my, m+1, v, nyn—m+1,ve, n—m+k+1}, By={1, ¢oe, n—m,

m+1’---’n,n—m+k+2,n.’n——m+2k+2}, Bsz{]_,no’n—m’m+1,u.,n’n—m+k+2’
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sss, m}, it is easy to check that #={B,, B,, +, By} is a (5k+3, 7k+4)-t.c.s.
where n=7k+ 4,

If m=5k+ 4, then n<[%m]=7’k+5 and it follows that V(5k+ 4, 7k+ 5)<
Vsk+ 3, Tk+ 4)<5.

Lemmas V(m, m<6 if Z>L and 4{m-2, Vim n<p if 2>Z,

Proof Let B ={1,2,3,4}, B,={1,2,5,6}, B;={1,3,5,6}, B,={1,4,5,6},

B, ={2,3,4,5}, B,=1{2,3,4,6}, Only twenty cases should be checked to show
that #={B,, B,, «, By} is a (4, 6)—t.c.s. and it follows that V(4k, 6k)< 6.

If m=4k+ 1, then n<[%m]=6k+ 1, it follows that V(4k+ 1, 6k+ 1)<
V(dk, 6kX< 6.

If m=4k+ 2, then 4|m—2, n<-g—m=6k+3. Thus n<6k+ 2, it follows that
V(dk+ 2, 6k+ 2)<V(4k, 6k)< 6.

If m=4k+ 3, then n<[%m]=ak+ 4. Let B, ={1,e,4k+ 2, 6k+ 4}, By={1,
...,k, 2k + 2, e, 3k+ 2, 4k+ 3, vee, 6k+ 41}, Bsz{l,..., 2k + 1, 4k + 3, oo, 6k +
4}, By={1, e, k+ 1 ,3k+ 3,000, 4k+ 2,4k+ 3,0, 6k+ 4}, Bi={k+ 1, e, 5k+
2, 6k+ 4}, Bg={k+ 1,0, 4k+ 2,5k+ 3,9+, 6k+ 3}. It can be proved that
B ={B,, B,, «+, Bg} is a (4k+ 3, 6k+ 4) —t.cC.s.

4. Proof of Theorem 3

lemma 5 completed the proof of the first part of theorem 3. Now we only
need to prove V(4k+ 2, 6k+ 3)= 7 for all positive integers k.

Lemma6 V(4k+ 2, 6k+ 3)>7, where k is any positive integer.

Proof Otherwise, let 8 ={B,, B,, *»-, B} be a (4k+2, 6k+3)-t.c.s. Thus

the average number of occurence of an element in the B/s is

6(4k+2)
6k +3

= 4.

If there is an element belongs to only three of the B/s, it may lead to a contra-
diction (see the proof of lemma 1, d)). This implies that every element belongs
to exactly four of the Bjs.

Let ¥={C|CC{1,2,3,4,5,6}, |C|=4} and let T, #->P(A,) be defined
as

T{)= (B ,
i€C

where P(A,) is the power set of A,.

Let us keep in mind that B, = | JT(CY(T(C)B), i€C is equivalent to
7(C)B,.

Since every element of A, belongs to exactly four of the B/s, the following
equations hold,

T(C) NT(CY = if C,+#C,, C%‘VT(C) =A,
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Lemma7 |T(C)|<k, vV CE #.

Proof Suppose |T(C)|>0 and C=(iy, iy, i3, igh. Let {x, yii A, .
if there exists no t (1<{r<4), such that {x, y} CB, , then it is quite obvious
that {u, x, y} B, for any i€ {1,2,++,6}, € T(C). This contradicts to the assu-
mption that {B,, B,, =+, Bs} is a (m, n) —t.c.s. Thus every pair set {x, y}gB,-’
for a certain t(1<r<4), where {x, y}ZA,-T(C). This implies 2’ ={Bj, B},
B, B,) is a (m~|T(C)|, n~[T(C)|) - pair covering system, where B/ =B, -
T(Cy (r=1,2,3,4). According to theorem 1,

m- | T(C)
T(C) > ’
which implies 5(4k +2 - IT(C>j>>/3(6k+3— ITOD, IT(C)1<k+%. Thus

| T(C) <k.
Let ¢ ={C|CE ¥, T(C)=Z}, it follows from the fact | gT(C)|=|An|:
ce¢¥

6k+ 3, |[T(O)|<k, VCE ¥ that |P|>7.

Lemma8 If C, C,, C,€ P, then C,NC,NC,+T.

Proof Let x€T7(C,), y€T(C,), z€T(C,). Since there exists a B, (1<r<86),
such that {x, y, z} CB,, which implies r&€ C, C,NC;. Thus C,NC; NC,#.

Lemmad [#[<1".

Proof Otherwise, let {C,, C,, ++, C;;} T #. If is easy to see that for any
C€ ¢, there are three pairs, say C/, C/€ ¢ (i=1,2,3), such that CNC/NC/=<
and for any pair C;, C,€ ¥, there is at most one element C,€ ¥ makes C;
C,NC,=J. This implies there are thirty-three pairs, say Cj, C”E € (k=1,2,-
33), such that for any given k& (1<k<(33) C;NC{NC;=Q for a certain i (1<1<
1.

According to lemma 8, for any k (1<{k<(33), at least one of C;, C; belongs
to € - 4.

For a given pair C, C’¢€ ¥, C’, C” is said to possess Property A if

3C€ ¥, such that CNC’'NC"=Q (A)

The discussion above shows that there are thirty-three pairs, C;, C; (k=1,
2,+, 33), possess Property A and for each k (1<k<33), at least one of C;, C;
belongs to ¢-P.

6
But since | (fl:(/i) =15, | ¢-®|=| €|-|#|<4 and for any C'€ &, there

exist exactly six C/€ ¢ (j=1,2,+-,6) such that C’, C/ possesses Property A, the
total number of pairs of @,any one of which contains at least one element of

¢ - 4 and possesses Property A,is at most equal to 4x6=24,

This leads to a contradiction and lemma 9 is proved.
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Lemmal0 Each element of {1,2,+, 6} belongs to at most |#P|-3 eleme-—
nts of #.

Proof Otherwise, there is an element, say i (1<i<6), belongs to ]ﬂl— 2
elements of . Let the two elements which does not containi be C,, C,, then
T(CYCB, for all Ce®w -{(C,, C,}.

Thus
A, -TCH UT(C, i%{(c) -T(CH UTCY =C%;T(C) -T(CH UT(Cy =B,

This implies
A, - T(CHUTC)|=[A|-|T(CDUTCY|=|B|=4dk+ 2.
[ TECHUTECH=|TCH|+|T(C|=2k+ 1.

This contradicts to lemma 7.

Lemma I |®|=7, |®|+38.

Proot If |.¢|: 7, then it follows from lemma 10 that each element of {1,
2,++, 6} belongs to at most four elements of £ . Thus the total number of occur—
rences of {1,2,+,6} in elements of 9 is at most equal to 4 x 6 =24, but thijs
number should equal to 4 x 7 =28. This is a contradiction, Thus |#|+#7.

| #|+8 is proved in much the same way.

Y To complete the proof of Lemma 6 ,there are only two cases need to be
ruled out, ;

Case 1. |#|=9. Let &2={C,, C,, *, Cy}.

With much the same discussion as that of lemma 11, it can be proved that
every element of {1,2,++, 6} occurs in exactly six elements of % . But the follo-
wing lemma asserts that this is impossible.

Lemma 12 There are not 9 different subsets of {1,2,+,6}, say C,, C,, =,
C,, satisfying;

(1) |C/|=4 for i=1,2,++,95 (2) each element of {1,2,+,6} occurs in
exactly six of the C/s; (3) C,NC,C,#0 1<i<j<k<£<9.

Proof If there exist such 9 subsets, then |C,ﬂC,ﬂC,‘ﬂC,|< 2, 1<i<{j<k<
I< 9. Otherwise, without a loss of generality, let {1, 2} CC, NC,NC; NC,. Then
at least one of C,, Cq, C,, C,, C,, let us say C,, contains neither | nor 2, (Bec-
ause each of 1,2 belongs to two of Cs, Cq, C;, Gy, Cg), Thus C;=(3,4,5,6}.

Clearly, C,-{1,2}), C,-{1,2}, C.-{1,2}, C,-{1,2} are four different sub-
sets of {3,4,5,6} each of size 2. It is easy to see that there are 6 subsets of
{3,4,5,6) with size 2 and these six subsets are three disjoint pairs, so every
four subsets of {3,4,5,6} with size 2 contains at least one of the three pairs.
Suppose (C,—{1,2)MNC,-{L,2}) =, 1<k<j< 4, it follows that C,NC,NC,=

-~ -

. suppose F€C, eee "C(,the average occurrence of 2,3,4,5.6 in Cy, e, C, is %%
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Then at Least one of them occurs in four of C,,+-,C,.A contradiction,
Case 2. |®|=10. Let ¢ ={(C,, Cy, =, Cy}.
With much the same discussion as that of lemma 11, 12, we can show that;
(1) each element of {1,2,++,6} belongs to at most seven of the C/s and
at least 4 elements of {1,2,++, 6} occurs in seven of the C/s.

( 2) the cardinality of the intersection of any five C/s is less than 2, i,e.
[C,NC, NCeNC, NCy|< 2 for any 1 <i<j<k<I<hLI0.

Without a loss of generality, let each of 1,2,3,4 occurs in 7 of the (s,
aud lct 1 €C, NC; M+ C,. Then each of 2,3,4 occurs in at most four of C,,
C,, *+, C,, (see (2)). Since 2,3,4 occurs in seven of the C/s, it follows that

{2,3,4} CCy NGy NCyy and each of 2,3,4 occurs in exactly four of C;, C,, «,
C,. Let 26C,~l NG, NC;, NC,,» 3€C; NC;,NC;, NC;, , 4€ Ci, MCy, NCy, NCy,, whe-
F€ iy, oy Fay J1s **%y Jas Kis **% k4€{1,2,---,7}.

If iy, ooy g Uldn, oo ot #(1, 2,000, 70, then [liy, oo, iy} Ny, o, Jad > 2.
Suppose {u, o} CTliy, *=, iy} Ny, oo, Joby 1<u<p<7, it follows that (2,3} C
C.NC,NCs NCy NCyo- This contradicts to (2).

If {iy, »ey iyt U1, o0y Ja} ={1,2,e0,7}, then either | (i, oo, ig} N{ky, oo, k)|
>2, or |{jy, * j&) N{ky, *==, k4}|>> 2. This also leads to a contradiction,

The proof of lemma 6 is completed.

Lemma 13 V(4k+2, 6k+3)=7.

Proof Let By ={1,,4k+2}, By={1, eoe, k,2k+2,000,3k+2,4k+3,0e,6k+3},
By ={1,000,2k+1,4k+3,000,6k+3}, By={1,000,k+1,3k+3,e0e,6k+3}, Bs={k+1,e,
5k+2), Bg={k+1,000,4k+1,5k+3,e0,6k+3}, By={k+2,e00,4k+2,5k+3,ees 6k+
3}. Then 8={B,, B,, -, B,} is a (4k+2, 6k+3)—t.c.s.
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