On the Solution of the Operator Equation AT-TB=S*

Lu Shijie (鲁世杰)

(Zhejiang University)

Let H, K be two Hilbert spaces over complex field Λ . Let $B(H_1, K_1)$ denote the set of all bounded linear operators from H to K. If H = K, we write $B(H_1)$ instead of $B(H_1, K_1)$. Consider the operator defined by the equation

$$D_{AB}T = AT - TB$$

which is called generalized derivation. In (1) it was shown that $\sigma(D) \subset \sigma(A) - \sigma(B)$ where $\sigma(T)$ denotes the spectrum of T. Therefore if $\sigma(A) \cap \sigma(B) = \emptyset$, then D_{AB} is invertible and hence the equation

$$AT - TB = S \tag{1}$$

has an unique solution for every $S \in B(K, H)$. If $O \in \sigma(D_{AB})$, then the solution is complicated. In the present note we confine our attention to the solution of (1) in a special case: A and B are nilpotent operators, $S \in \overline{K(D_{AB})}$ (the closure of the range of D_{AB}). By a program well designed we shall show that (1) dose have solutions under some sufficient conditions. Obviously, such a result can be viewed as a sufficient condition for D_{AB} to have closed range.

For nilpotent operators A and B of order n, define subspaces

$$\mathbf{H}_{i} = \ker A^{i} \ominus \ker A^{i-1}, \quad \mathbf{K}_{i} = \ker B^{i} \ominus \ker B^{i-1}, \quad 1 \leq i \leq n,$$
 (2)

let P_i , Q_i be the orthogonal projections of H, K on H_i , K_i respectively and

$$A_i = P_i A P_{i+1}$$
, $B_i = Q_i B Q_{i+1}$, $1 \le i < n$. (3)

We begin with stating two definitions. (For details see [2].)

Definition 1. Let $1 \le k_1 < \cdots < k_{m-1} < n$ be m-1 natural numbers. If only $R(A^{k_p})$, $1 \le p \le m-1$ are closed, then we say that the C-state of A is $\{k_1, \dots, k_{m-1}\}$ and denote this situation by $C(A) = \{k_1, \dots, k_{m-1}\}$. If all $R(A_k)$ are closed, but only A_{k_p} , $1 \le p \le m-1$ are not invertible (equivalently $R(A_{k_p}) \subseteq H_{k_p}$), then we say that the I-state of A is $\{k_1, \dots, k_{m-1}\}$ and denote this situation by $I(A) = \{k_1, \dots, k_{m-1}\}$.

Let $X_i(p)$, $1 \le i \le k_p$, $1 \le p \le m$ be pairwise disjoint Banach spaces and X be the direct sum

^{*} Received Apr. 17, 1984.

$$X = \sum_{p=1}^{m} \sum_{i=1}^{k_p} X_i(p)$$
,

then every $A \in B(X)$ has the form

 $A=(A)=(a_{ij}(p,q)) \quad 1\leq p, \quad q\leq m, \quad 1\leq i\leq k_p, \quad 1\leq j\leq k_q,$ where $a_{ij}(p,q)\in B(X_j(q),X_i(p))$.

Definition 2. If $a_{ij}(p, q)$ satisfy the conditions

 \downarrow) $a_{ij}(p, p) = 0$ for $i \ge j$ and $a_{ij}(p, q) = 0$ for p = q and $i \ge j - 1$;

II) $a_{i,j-1}(p, p)$ are invertible for $1 \le i \le k_p$,

then (A) is called a matrix of type $I\{k_1, \dots, k_{m-1}\}$. If II) is replaced by

II') $a_{i,-1}(p, p)$ are injective for $1 \le i \le k_p$ and the frist k_{p-1} ones are invertible,

then (A) is called a matrix of type $C\{k_1, \dots, k_{m-1}\}$.

In [2] we have obtained

Theorem 1. Let H be a Hilbert space, $A \in B(H)$ be a nilpotent operator of order n, and $I(A) = (C(A) \supset) \{k_1, \dots, k_{m-1}\}$, then A has a matrix form of type $I\{k_1, \dots, k_{m-1}\} (C\{k_1, \dots k_{m-1}\})$ which will be called the fine matrix representation of A.

Proposition 1. Let H, K be complex Hilbert spaces, $A \in B(H)$, $B \in B(K)$ be nilpotent operators of order n, if $I(A) = \mathcal{I}$, then the equation (1) has solutions for $S \in \overline{R(D_{AB})}$.

Proof. Since $S \in \overline{R(D_{AB})}$, there exists a sequence $\{T^{(k)}\} \subset B(K, H)$ such that $AT^{(k)} - T^{(k)}B \rightarrow S$ (4)

Define H_i , K_i , A_i , B_i by (2) and (3), then A, B, $T^{(k)}$, S have the following matrix forms

$$A = \begin{pmatrix} 0 & A_1 & \cdots & \times \\ \vdots & \ddots & \vdots \\ 0 & \cdots & 0 \end{pmatrix} \qquad B = \begin{pmatrix} 0 & B_1 & \cdots & \times \\ \vdots & \ddots & \vdots \\ 0 & \cdots & 0 \end{pmatrix}$$
$$T^{(k)} = (t_{i}^{(k)}) \qquad , \quad S = (S_{ij})$$

where A_1, \dots, A_{n-1} are invertible. Frist we consider column 1 of (4):

$$A_1 t_{21}^{(k)} + \times t_{31}^{(k)} + \dots + \times t_{n1}^{(k)} \rightarrow S_{11}, \quad \dots, \quad A_{n-1} t_{n1}^{(k)} \rightarrow S_{n-1,1}, 0 \rightarrow S_{n+1}.$$
 (5)

Since A_k are invertible, the solution of (1) is

$$t_{n1} = A_{n-1}^{-1} S_{n-1,1}, \quad \cdots \quad t_{21} = A_1^{-1} (S_{11} - \times t_{31} - \cdots - \times t_{n1})$$

and we observe that

$$t_{i1}^{(k)} \rightarrow t_{i1} \quad \text{for } 2 \le i \le n.$$
 (6)

The column 2 of (4) is $A_1 t_{22}^{(\cdot,k)} + \cdots + *t_{n2}^{(\cdot,k)} = t_{11}^{(\cdot,k)} B_2 + S_{12}$, \cdots , $A_{n-1} t_{n2}^{(\cdot,k)} = t_{n-1/1}^{(\cdot,k)} B_2 + S_{n-1/2} \cdots t_{n-1/2}^{(\cdot,k)} B_2 + S_{n2}$. (6) implies $-t_{n1} B_2 = S_{n2}$. Since t_{n1} , \cdots , t_{21} have been known, t_{n2} , \cdots , t_{32} can be determined. Continuing in the same way we obtain the

entries $\{t_{ij}, i = j\}$ and

$$t_{ij}^{(k)} \rightarrow t_{ij} \quad \text{for} \quad i > j_{\bullet}$$
 (7)

To find the others, we define arbitrarily t_{ij} for $1 \le j \le n$ and consider again the columns 2, ..., n in turn. Using the invertibility of A_i' s we can find the entries $\{t_{ij}, i \le j\}$. Finally put $T = (t_{ij})$ which is a solution of (1).

Remark I. Since t_{1j} are arbitrary for $1 \le j \le n$, the solution is not unique.

Remark 2. (7) implies that the equations determined by the last line are automatically satisfied.

Proposition 2. Let H, K be complex Hilbert spaces, $A \in B(H)$, $B \in B(K)$ be nilpotent operators of order n. If $I(A) \subset C(B)$, then the equation (1) has solutions for $S \in \overline{R(D_{AB})}$.

Proof. By Theorem 1 we may assume that

$$A = (A) = (a_{ii}(p, q)), B = (B) = (b_{ii}(p, q))$$

where $a_{ij}(p, q)$, $b_{ij}(p, q)$ satisfy the conditions $I)_{\bullet}$, I, and I, I' respectively.

The solution is rather complicated which depends partly on the invertibility of $a_{i,i+1}(p,p)'$ s and partly on the closedness of $R(B^{kp})'$ s. By the proof of Proposition 1 we can consider directly the equation (1) instead of (4). For convenience's sake, we introduce some notation frist. The col j(q) of (5) is the column

 $(S_{1j}(1, q), \dots, S_{k,j}(1, q), \dots S_{1j}(m, q), \dots, S_{k,j}(m, q))^{T};$ the line i(p) of (S) is the line

 $(S_{il}(p, 1), \dots, S_{lk_1}(p, 1), \dots, S_{il}(p, m), \dots, S_{ik_m}(p, m));$ the equ ij(p,q) of (1) is the one determined by the entry with subscript ij(p, q) of (1), namely

$$\left(\sum_{\substack{1+2 \leq j' \leq k_{q'} \\ 1 \leq q' < p}} + \sum_{\substack{i+1 \leq j' \leq k_{p} \\ q' = p}} + \sum_{\substack{i+2 \leq j' \leq k_{q'} \\ p < q' \leq m}} \right) a_{ij'}(p, q') t_{j'j}(q', q)$$

$$\left(\sum_{\substack{1 \leq j' \leq j-2 \\ 1 \leq q' < q}} - \sum_{\substack{1 \leq j' \leq j-1 \\ q' = p}} - \sum_{\substack{1 \leq j' \leq j-2 \\ p < q' < m}} \right) t_{ij'}(p, q') b_{j'j}(q', q) = S_{ij}(p, q).$$
(8)

Remark 2 implies that we need not consider the equ's with such subscripts ij(p, q) where $i = k_p$, $p \ge q$, $1 \le q \le m$.

The whole solution contains several steps;

1) Consider the col's 1(q) $(1 \le q \le m)$ of (1). Since $b_{i1}(p, q) = 0$ for $1 \le i \le k_p$, $1 \le p$, $q \le m$, the sum of $t_{ij'}b_{j'j}$ in (8) are zero, consequently the corresponding equ's are the simpliest. Frist we solve the equ's i1(p, q),

 $k_{m-1}-1 \le i < k_m$. By the condition [) they can be written as $a_{k_{m-1}-1,k_{m-1}} (m, m) t_{k_{m-1}-1} (m, q) + \cdots + \star t_{k_{m}-1} (m, q) = S_{k_{m-1}-1,1} (m, q),$..., $a_{k_{m-1}-1,k_{m}} (m, m) t_{k_{m}-1} (m, q) = S_{k_{m-1}-1,1} (m, q)$

By condition []) we can find the solution $\{t_{i1}(m,q), k_{m-1} \le i \le k_m\}$. Next we turn to the equ $k_{m-1}-1, 1(m-1,q)$. Since $k_p \le k_{p+1}$, the frist sum in (8) is zero. Thus the equ $k_{m-1}-1$, 1(m-1,q) has the form

$$\begin{aligned} &a_{k_{m+1}-1, k_{m+1}}(m-1, m-1)t_{k_{m+1}, 1}(m-1, q) + \sum_{k_{m+1}-j' \leq k_m} a_{k_{m+1}-1, j'}(m-1, m)t_{j'1}(m, q) \\ &= S_{k_{m+1}-1, 1}(m-1, q). \end{aligned}$$

Since all of t_{ij} in the above sum are known, by II) we can obtain $t_{k_{m-1}1}(m-1,q)$. Put $i=k_{m-1}-2$, ..., 1 in turn and for each i consider the equ's i1(p,q) for $i < k_p$. Using the same argument we can find the entries $\{t_{i1}(p,q), 2 \le i \le k_p, 1 \le p, q \le m\}$.

2) consider the col's 2(q) ($1 \le q \le m$). In this case by I) only $-t_{i1}(p,q)$ $b_{12}(q,q)$ appear in the left side of the equ's i2(p,q). (See equ (8).) However the entries $\{t_{i1}(p,q), 2 \le i \le k_p, 1 \le p, q \le m\}$ have been known we can solve the equ' $i2(p,q), 2 \le i \le k_p$ to obtain the entries $\{t_{i2}(p,q), 3 \le i \le k_p, 1 \le p, q \le m\}$. Continuing in the same way we obtain the entries $\{t_{ij}(p,q), i > j, 1 \le p, q \le m\}$. Moreover we have the following set equality $\{j,a_{ij}(p,q), (b_{ij}(p,q))\}$ may be nonzero $\{j,t_{ij+1}(p,p')\}$ are

determined = $\left\{ \begin{array}{l} \mathbb{Z}, & q \neq p \\ (i+1), q = p \end{array} \right\} K_q$, for any given i, p, q, q'

- 3) To solve the equ's ij(m, q) ($i < j \le k_q$, $1 \le q \le m$) we define arbitrarily $t_{1j}(m, q)$ for $1 \le j \le k_q$, $1 \le q \le m$. By 1) we can find the solution $\{t_{ij}(m, q), i \le j \le k_q, 1 \le q \le m\}$ according to the order $j = 2, \dots, k_m$, for each j let $q = 1, \dots, m$ and i = j 1, \dots , 1. Thus all entries in the line's i(m), $1 \le i \le k_m$ are determined.
- 4) In order to determine the entries t_{ij} (m-1, q), we can not follow 3) word for word. The reason is that if define t_{1j} (m-1, q) arbitrily then t_{k_{m-1}, k_m-1} (m-1, m) will be determined by the equ $k_{m-1}-1$, k_m-1 (m-1, m) (via a_{k_m-1} k_{m-1} (m-1, m-1) is invertible) and it will appear in the equ $k_{m-1}k_m$ (m-1, m), because, by the definition of K_k (m) b_{k_m-1, k_m} $(m, m) \neq 0$. But it is not sure that the entry will satisfy the equation. While the analysis is done, the solution is at hand. Consider the equ's $k_{m-1}k_{m-1}+i$ (m-1, m), $1 \leq i \leq k_m-k_{m-1}$, which can be written as

$$\left(\sum_{q=m}^{k_{m-1}+i-2} \sum_{j=k_{m-1}}^{k_{m-1}+i-2} t_{k_{m-1}j}(m-1, q) b_{j, k_{m-1}+i}(q, m) - \sum_{j=k_{m-1}}^{k_{m-1}+i-1} t_{k_{m-1}, j}(m-1, m) b_{j, k_{m-1}+i}(m, m) - \sum_{j=k_{m-1}}^{k_{m-1}+i-1} t_{k_{m-1}, j}(m-1, m) b_{j, k_{m-1}+i}(m, m)\right)$$

$$= S'_{k_{m-1}, k_{m-1}+i}(m+1, m) \tag{10}$$

where

$$S_{k_{m-1}, k_{m-1}+i}(m-1, m) = S_{k_{m-1}, k_{m-1}+i}(m-1, m) - \sum_{j=k_{m-1}+2}^{k_m} a_{k_{m-1}, j}(m-1, m) t_{j, k_{m-1}+i}$$

$$(m, m) + \sum_{q=1}^{m} \sum_{j=1}^{k_{m-1}-1} t_{k_{m-1}, j}(m-1, q) b_{j, k_{m-1}+i}(q, m)$$

are known. For each entry $t_{k_{m-1},j}(m-1,q)$ in the left side of (10), consider equ's i, $i+j-k_{m-1}+1$ (m-1,q), $1 \le i < k_{m-1}$. which can be written as

$$a_{12}(m-1, m-1)t_{2, j-k_{m-1}+2}(m-1, q)-t_{1, k_{m-1}+1}(m-1, q)b_{j-k_{m-1}+1, j-k_{m-1}+2}$$

$$\cdot (q \cdot q) = S'_{1, j-k_{m-1}+2}(m-1, q), \dots,$$
(11)

$$a_{k_{m-1}-1, k_{m-1}} (m-1, m-1) t_{k_{m-1}, j} (m-1, q) - t_{k_{m-1}-1, j-1} (m-1, q) b_{j-1, j} (q, q)$$

$$= S'_{k_{m-1}-1, j} (m-1, q)$$

where

$$S'_{i, i+j-k_{m-1}+1}(m-1, q) = S_{i, i+j-k_{m-1}+1}(m-1, q) - \sum_{q=1}^{m} \sum_{j'=i+2}^{k_{q'}} a_{ij'}(m-1, q')$$

$$\cdot t_{j', -i+j-k_{m-1}+1}(q', q) + \sum_{q'=1}^{m} \sum_{j'=1}^{i+j-k_{m-1}-1} t_{ij'}(m-1, q') b_{j', i+j-k_{m-1}+1}(q', q)$$

are known by the set equality (9). Since $a_{i,\ i+1}(m-1,\ m-1)$ are invertible, $t_{i,\ i+j-k_{m-1}}(m-1,\ q)$ can be presented by $t_{i-1,\ i+j-k_{m-1}-1}(m-1,\ q)$. A straightforword matrix multiplication shows that the successive substitution of the expression of $t_{i,\ i+j-k_{m-1}}$ by $t_{i-1,\ i+j-k_{m-1}-1}$ into the equ $k_{m-1}k_{m-1}+i(m-1,\ m)$ yields

$$T'_{m-1}B^{k_{m-1}} = S_{m-1} \tag{12}$$

where

$$T'_{m-1} = (t_{1j}(m-1, q)), S'_{m-1} = (S''_{1j}(m-1, q))$$

is known and $S_{1j}^{"}(m-1,q)=0$ for $j \leq k_{m-1}$ (because the entries $\beta_{ij}(p,q)$ of $B^{k_{m-1}}$ are zero for $j \leq k_{m-1}$). Since $B^{k_{m-1}}$ is injective on $(\ker B^{k_{m-1}})^{\perp}$, $\dim R(B^{k_{m-1}})$ = $\dim (\ker B^{k_{m-1}})^{\perp}$. Since $R(B^{k_{m-1}})$ is closed, T'_{m-1} is determined on $R(B^{k_{m-1}})$ by (12). Let T_{m-1} be an extension of T'_{m-1} on the subspace $\sum_{i=1}^{k_m} \sum_{m=1}^{k_m} k_i(q) + \sum_{i=1}^{k_m} k_i(m)$

and put

$$t_{1j}(m-1, q) = T_{m-1, k_j}(q).$$

$$-259 --$$

Then define the other entries $t_{1,i}(m-1, q)$ arbitrarily and employ the method used in (3) to obtain the entries $\{t_{ij} (m-1, q), 1 \le q \le m\}$.

5) To determine the entries $t_{ij}(p, q)$, $1 \le p \le m-2$, we can use closed ness of $R(B^{k_p})$. The difference from (4) is that we should consider more equ's $k_p k_p + i(p, q)$, $1 \le i \le k_q - k_p$, $p < q \le m$ instead of equ's (10).

Finally put $T = (t_{ij})$ which is a solution of (1).

Now we are in the position to prove the result.

Theorem 2. Let H, K be complex Hilbert spaces and $A \in B(H)$, $B \in B(K)$ be nilpotent operators of order n, the equation (1) has solutions for $S \in$ $\overline{R(D_{AB})}$ if at least one of the following conditions is satisfied:

i) $I(A) = \emptyset$; ii) $I(B) = \emptyset$; iii) $C(A) = C(B) = \{1, 2, \dots, n-1\}$. iv) $I(A) \subset$ C(B); v) $C(A) \supset I(B)$.

Proof. For case i) we apply proposition 1. For case iii) we apply Lemma 4.2 of [1] For case iv) we apply Proposition 2. For case ii) and v) we consider $D_{B^{\bullet}A^{\bullet}}$, then apply Theorem 3 of (2), Lemma 2.2 of (1) and Proposi tion 1 and 2.

In order to illustrate the method used above we give two examples here.

Example 1. Assume $A^3 = B^3 = 0$, $I(A) = C(B) = \{2\}$. Then set

$$H_5' = \ker A^3 \ominus \ker A^2$$
, $H_4' = A_2 H_5'$, $H_3' = A_1 H_4'$,

 $H'_1 = \ker A \ominus H'_3$, $H'_2 = \{x \in (\ker A^2 \ominus \ker A), A_1 x \in H'_1\}$.

Similarly define K'_i s. Thus

where a_2 , a_4 , a_5 , b_4 , b_5 are invertible. $R(b_4b_5) = R(B^2)$ is closed. The equation (1) can be written as

$$\begin{bmatrix} a_{2}t_{21} + \times t_{51} & a_{2}t_{22} + \times t_{52} - t_{11}b_{2} & a_{2}t_{23} + \times t_{53} & a_{2}t_{24} + \times t_{54} - t_{13}b_{4} & a_{2}t_{25} + \times t_{55} - t_{11} \times - t_{13} \times - t_{14}b_{5} \\ 0 & -t_{21}b_{2} & 0 & -t_{23}b_{4} & -t_{21} \times - t_{23} \times - t_{24}b_{5} \\ a_{4}t_{41} + \times t_{51} & a_{4}t_{42} + \times t_{52} - t_{31}b_{2} & a_{4}t_{43} + \times t_{53} & a_{3}t_{44} + \times t_{54} - t_{33}b_{4} & a_{4}t_{45} + \times t_{55} - t_{31} \times - t_{33} \times - t_{34}b_{5} \\ a_{5}t_{51} & a_{5}t_{52} - t_{41}b_{2} & a_{5}t_{53} & a_{5}t_{54} - t_{43}b_{4} & a_{5}t_{55} - t_{41} \times - t_{43} \times - t_{44}b_{5} \\ 0 & -t_{51}b_{2} & 0 & -t_{53}b_{4} & -t_{53} \times - t_{54}b_{5} \end{bmatrix} = (S_{ij})$$

By Remark 2 we need not consider the equ's (5, 1) - (5, 5) and (2, 1)=(2, 4).

Solution i) Since a_1 , a_4 and a_5 are invertible we can solve the equ's corresponding to the columns 1, 3 to obtain t_{51} , t_{41} , t_{21} , t_{53} , t_{43} , and t_{23} . (Note that these entries automatically satisfy the equ's (2, 2) (2, 4), (5, 2), (5, 4),

- ii) Solve the equ's (4, 2) and (4, 4) to obtain t_{52} , t_{54} . (Note that t_{51} , t_{53} and t_{54} automatically satisfy the equ (5, 5)).
- iii) Define t_{3j} arbitrarily for $1 \le j \le 5$ and solve the equ's. (3, 2), (3,3), (4, 5), (3, 5) in turn to obtain t_{42} , t_{44} , t_{55} , and t_{45} .
 - iv) Solve the equ's (1, 4), and (2, 5), i.e.,

$$a_2^* t_{24} - t_{13} b_4 = S_{14}' \tag{13}$$

$$-t_{24}b_5 = S_{25}' \tag{14}$$

where $S'_{14} = S_{14} - *t_{54}$, $S'_{25} = S_{25} + t_{21} + t_{23}$. From (13) we have

$$t_{24} = a_2^{-1} (S_{14}' + t_{13}b_4)$$
 (15)

The substitution of (15) into (14) yields $t_{13}B^2 = -(a_2S_{25}' + S_{14}'b_5)$. Since $R(B^2)$ is closed and equal to K_1' we can define

$$t_{13}B^2y = -(a_2S'_{25} + S'_{14}b_5)y, \quad \forall \ y \in K'_5.$$

Then determine t_{24} by (15).

v) Define t_{11} , t_{12} , t_{14} , t_{15} arbitrarily and determine t_{22} by equ(1, 2), t_{25} by (1, 5).

Example 2. Assume $A^3 = B^3 = 0$, $I(A) = C(B) = \{1\}$. Then set $H'_1 = H_1 \oplus R(A_1)$, $H'_2 = R(A_1)$, $H'_3 = H_2$, $H'_4 = H_3$.

Similarly define K_i 's. Thus

$$A = \begin{bmatrix} 0 & 0 & 0 & \times \\ 0 & 0 & a_3 & \times \\ 0 & 0 & 0 & a_4 \\ 0 & 0 & 0 & 0 \end{bmatrix} \quad B = \begin{bmatrix} 0 & 0 & 0 & \times \\ 0 & 0 & 0 & \times \\ 0 & 0 & 0 & b_4 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

where a_3 , a_4 and b_3 are invertible, R(B) is closed. The equ (1) can be written as

$$\begin{bmatrix} *t_{41} & *t_{42} & *t_{43} - t_{12}b_3 & *t_{44} - t_{11} * - t_{12} * - t_{13}b_4 \\ a_3t_{31} + *t_{41} & a_3t_{32} + *t_{42} & a_3t_{33} + *t_{43} - t_{22}b_3 & a_3t_{34} + *t_{44} - t_{21} * - t_{22} * - t_{22}b_4 \\ a_4t_{41} & a_4t_{42} & a_4t_{43} - t_{32}b_3 & a_4t_{44} - t_{31} * - t_{32} * - t_{33}b_4 \\ 0 & 0 & - t_{42}b_3 & - t_{41} * - t_{42} * - t_{43}b_4 \end{bmatrix} = (S_{ij})$$

Similarly to the example 2, we can determine the entries $\{t_i, i \ge 2\}$.

Since B is injective on $K_3 \oplus K_4$, $\dim (K_3 \oplus K_4) = \dim R(B_{K_1 \oplus K_4})$. Since

 $R(B_{K_3' \cup K_4'})$ is closed, we can define an operator T_1' on $R(B_{K_3' \cup K_4'}) \cup K_1' \oplus K_2' \oplus K_3'$ by the equation

$$T_1' \mathbf{B} \mathbf{y} = (0 \quad 0 \quad S_{13} - *t_{43} \quad S_{14} - *t_{44}) \mathbf{y}, \quad \forall \mathbf{y} \in \mathbf{K}_{10}' \cap \mathbf{K}_{10}'$$

Let T_1 be an extension of T_1' on $\mathbf{K}_1' \oplus \mathbf{K}_2' \oplus \mathbf{K}_3'$ and then put

 $t_{11}=T_{1k_1'},\ t_{12}=T_{1k_2'},\ t_{13}=T_{1k_3'}.$ Finally define t_{14} arbitrarily and let $T=(t_{ij})$ which is a solution of (1)

References

- ± 1] Finlkow, L. A. Elements of spectral theory for generalized derivations, J. Operator Theory, 3(1980), 89-113.
- † 2 + Lu Shijie. On fine matrix representations of nilpotent operators, Acta Math. Sinica. 1 (1985). 294-301.
- $\{3\}$ Rosemblum, M, On the operator equation AX = XB = Q, Duke Math. J, 23(1965), 263-269.
- Life Taylor, A. E., Introduction to Functional Analysis. New York, 1963.