Matrix Algebra Motivated by Essentially Stochastic Matrices*

Jin Bai Kim
(West Virginia University, Morgantown, W. VA.)

Abstract

A matrix of order n whose row sums are all equal to 1 is called an essentially stochastic matrix (see Johnsen [4]). We extend this notion as the following. Let F be a field of characteristic 0 or a prime greater than n, $M_n(F)$ denotes the set of all $n \times n$ matrices over F. Let t be an element of F. A matrix $A = (a_{ij})$ in $M_n(F)$ is called essentially t-stochastic' provided its row sums are each equal to t. We denote by $R_n(t)$ the set of all essentially t-stochastic matrices over F. We shall mainly study $R_n(0)$ and $R_n(F) = \bigcup_{t \in F} R_n(t)$. Our main references are Johnson [2, 4] and Kim [5].

1. Introduction Raview Let F be a field of characteristic 0 or a prime greater than n. We denote the set of all $n \times n$ matrices over F by $M_n(F)$. For $t \in F$, we denote by $R_n(t)$ the set of all matrices $A = (a_{ij})$ of order n in $M_n(F)$ such that $\sum_{j=1}^n a_{ij} = t$. Any A in $R_n(t)$ will be called an essentially t-stochastic matrix. We shall study $R_n(F) = \bigcup_{t \in F} R_n(t)$ (which is a multiplicative semigroup). We review papers. Johnsen [4] studied $R_n(1)$ and proved that any matrix A in $R_n(1)$ is a product of at most q(n) elementary matrices in $R_n(1)$, where

in $R_n(1)$ is a product of at most q(n) elementary matrices in $R_n(1)$, where q(x) is a quadratic polynomial in x when $F \neq GF(2)$. Johnsen also established a similar result for F = GF(2). For $A \in M_n(F)$, A^T denotes the transpose of A. Define $L_n(t) = \{A^T : A \in R_n(t)\}$ and $S_n(t) = R_n(t) \cap L_n(t)$. Any matrix in $S_n(1)$ is called an essentially doubly stochastic matrix. In [2], Johnsen proved that $S_n(1)$ has an algebra structure $\{S_n(1), \oplus, \otimes, \times\}$ when the matrix sum \oplus is defined by $A \oplus B = A + B - J_n$, \otimes is defined by $A \otimes B = AB$ (the usual matrix product) and a scalar multiplication $a \times A$ is defined by $a \times A = aA + (1-a)J_n$, for $A, B \in S_n(1)$, for $a \in F$ and where J_n is the matrix with every entry of J_n is equal to 1/n.

Johnsen [2] proved that $S_n(1)$ is algebra-isomorphic to $M_{n-1}(F)$. Let $M_1 = \{A = (a_{ij}) \in M_n(F) : a_{2i} = a_{3i} = \cdots = a_{ni} = 0\}$. We shall show that $R_n(F)$

^{*} Received September 8, 1984. AMS(1980) subject classification. Primary 15A15. Secondary 16 A 42.

is algebra-isomorphic onto M_1 . We shall generalize the following well known result.

Theorem A. (See Theorem 5.4[8, p.58]). Let A be a doubly stochastic ma trix of order κ . Then $A = c_1 P_1 + c_2 P_2 + \cdots + c_k P_k$, where P_i are permutation matri ces and the c_i are positive reals such that $c_1 + c_2 + \cdots + c_k = 1$. We shall compute the number of idempotents in the set $S_n(t)$.

2. $R_n(F)$. We begin with the following lemma.

Under the usual matrix operations, $R_{\bullet}(0)$ and $R_{\bullet}(F)$ are algeb ras over F.

Proof Let s, $t \in \mathbb{F}$. Let $A \in \mathbb{R}_n(s)$ and $B \in \mathbb{R}_n(t)$. Then we can see that $A + B \in \mathbb{R}_n(t)$ $\mathbf{R}_n(s+t)$, $AB \in \mathbf{R}_n(st)$ and $tA \in \mathbf{R}_n(ts)$. This proves the lemma.

We define $M_1 = \{A = (a_{ii}) \in M_n(F) : a_{i1} = 0 \text{ for } i = 2, 3, \dots, n\}$ and $M_2 = \{A = (a_{ij}) \in M_n(F) : a_{ij} \in A_n(F) \in A_n(F) \}$ $M_n(F): a_{i1} = 0$ for all i). We shall prove the following theorem.

Theorem 1 (1) $R_n(F)$ and M_1 are algebra-isomorphic. (2) $R_n(0)$ and M_2 are algebra-isomorphic..(3) $R_n(0)$ is an ideal of $R_n(F)$ and the quotien algebra algebra $R_n(F)/R_n(0)$ is isomorphic onto F.

(1) We define a non-singular matrix $X = (x_{ij}) \in M_{k}(F)$ by

Then we can see that:

$$Y = \begin{pmatrix} \frac{1}{n} & \frac{-(n-1)}{n} & \frac{-(n-2)}{n} & \frac{-(n-3)}{n} & \frac{-(n-4)}{n} & \cdots & \frac{-3}{n} & \frac{-2}{n} & \frac{-1}{n} \\ \frac{1}{n} & \frac{1}{n} & \frac{-(n-2)}{n} & \frac{-(n-3)}{n} & \frac{-(n-4)}{n} & \cdots & \frac{-3}{n} & \frac{-2}{n} & \frac{-1}{n} \\ \frac{1}{n} & \frac{1}{n} & \frac{2}{n} & \frac{3}{n} & \frac{-(n-4)}{n} & \cdots & \frac{-3}{n} & \frac{-2}{n} & \frac{-1}{n} \\ \frac{1}{n} & \frac{1}{n} & \frac{2}{n} & \frac{3}{n} & \frac{-(n-4)}{n} & \cdots & \frac{-3}{n} & \frac{-2}{n} & \frac{-1}{n} \\ \frac{1}{n} & \frac{1}{n} & \frac{2}{n} & \frac{3}{n} & \frac{4}{n} & \cdots & \frac{n-3n-2n-1}{n} \\ \frac{1}{n} & \frac{1}{n} & \frac{2}{n} & \frac{3}{n} & \frac{4}{n} & \cdots & \frac{n-3n-2n-1}{n} \end{pmatrix}$$

 $(y_{i1} = 1/n, \ y_{ii} = (i-1)/n(i \neq 1), \ y_{ij} = (j-1)/n(i > j \text{ and } i \geq 2, \text{ and } y_{ij} = -(n-j+1)/n(j > i))$. Letting $XAY = D = (d_{ij}), (A \in R_n(t))$, we see that $d_{i1} = 0$ for $i \neq 1$, and hence $D \in M_1$. We define ϕ_X by $\phi_X(A) = XAY(A \in R_n(t))$. We see that $\phi_X(AB) = \phi_X(A)\phi_X(B)$, $\phi_X(A+B) = \phi_X(A) + \phi_X(B)$ and $\phi_X(aA) = a\phi_X(A)$ for A, B in $R_n(F)$ and a in F. It is clear that ϕ_X is one-to-one. We shall show that the mapping ϕ_X is onto.

Let $C = (c_{ij}) \in M_1$ and $c_{11} = t \neq 0$. Consider $YCX = D = (d_{ij})$. We can compute the following d_{ij} :

$$d_{11} = \frac{1}{n} \left(t - c_{12} + \sum_{k=1}^{n-1} (n - k) c_{k+1,2} \right),$$

$$d_{1j} = \frac{1}{n} \left(t + c_{1j} - c_{1,j+1} - \sum_{k=1}^{n-1} (n - k) (c_{k+1,j} - c_{k+1,j+1}) \right), \qquad (2 \le j \le n-1),$$

$$d_{1n} = \frac{1}{n} \left(t + c_{1n} + \sum_{k=1}^{n-1} (n - k) c_{k+1,n} \right),$$

$$d_{i1} = \frac{1}{n} \left(t - c_{12} - \sum_{k=2}^{i} (k - 1) c_{k2} + \sum_{k=i}^{n-1} (n - k) c_{k+1,2} \right), \qquad (i \ge 2),$$

$$d_{ij} = \frac{1}{n} \left(t + c_{1j} - c_{1,j+1} + \sum_{k=2}^{i} (k - 1) (c_{kj} - c_{k,j+1}) - \sum_{k=i}^{n-1} (n - k) (c_{k+1,j} - c_{k+1,j+1}) \right)$$

$$(i \ge 2, n-1 \ge j \ge 2),$$

$$d_{in} = \frac{1}{n} \left(t + c_{1n} + \sum_{k=2}^{i} (k - 1) c_{kn} - \sum_{k=i}^{n-1} (n - k) c_{k+1,n} \right), \qquad (i \ge 2).$$

Therefore we obtain that $d_{11} + \sum_{j=2}^{n-1} d_{1j} + d_{1n} = t$ and $d_{i1} + \sum_{j=2}^{n-1} d_{ij} + d_{in} = t$, $(i \ge 2)_i$.

Thus $YCX = D \in \mathbf{R}_n(t)$, and hence $\phi_X \mathbf{R}_n(\mathbf{F}) = \mathbf{M}_1$. This proves (1).

From the preceding argument it follows that $\phi_X R_n(0) = M_2$ and hence $R_n(0)$ is algebra-isomorphic onto M_2 . We consider (3). Let I_n be the identity of $M_n(F)$. Then we can show that $R_n(t) = tI_n + R_n(0)$. From this we can obtain that $R_n(s)R_n(t) = (sI_n + R_n(0))(tI_n + R_n(0)) = stI_n + R_n(0)$, $R_n(s) + R_n(t) = (s+t)I_n + R_n(0) = R_n(s+t)$ and $aR_n(t) = (at)I_n + R_n(0) = R_n(at)$. (See the proof of Lemma 1). Therefore we proved that $R_n(0)$ is an ideal of $R_n(F)$ and the quotient algebra $R_n(F)/R_n(0)$ is isomorphic onto F. This proves (3) and we proved the theorem 1.

We recall that $L_n(t) = \{A = (a_{ij}^-) \in M_n(F): \sum_{i=1}^n a_{ij} = t \text{ for all } j\}$. Let $L_n(F) = \bigcup_{t \in F} L_n(t)$. Define $N_1 = \{A = (a_{ij}) \in M_n(F): a_{1j} = 0 \text{ for } 2 \le j \le n\}$ and $N_2 = \{A = (a_{ij}) \in N_1: a_{11} = 0\}$. We have the following.

Corollary (1) $L_n(F)$ and N_1 are algebra-isomorphic. (2) $L_n(0)$ and N_2 are algebra-isomorphic. (3) $L_n(0)$ is an ideal of $L_n(F)$. $L_n(F)/L_n(0)$ is isomorphic to F.

Proof Let X be the matrix defined in the proof of Theorem 1. For $A = B^T \in L_n(t)$, define a mapping ϕ_X by $\phi_X(A) = Y^T A X^T = Z^{-1} A Z = (XBX^{-1})^T$, where $Z = X^T$ and $Y = X^{-1}$. From Theorem 1 with this mapping the corollary follows.

Note t is an eigenvalue of $A \in \mathbb{R}_n(t)$.

3 Some Additional Results In [5] we proved the following theorem.

Theorem B If A is an essentially doubly stochastic matrix $(A \in S_n(1))$, then $A = c_1 P_1 + c_2 P_2 + \cdots + c_k F_k$, where the P_i are permutation matrices and the c_i are constants in F such that $c_1 + c_2 + \cdots + c_k = 1$.

From Theorem B we have the following

Theorem 2 Let $B \in S_n(t)$ be an essentially doubly t-stochastic matrix. Then $B = d_1 P_1 + d_2 P_2 + \cdots + d_k P_k$, where the P_i are permutation matrices and d_i are constants in F such that $d_1 + d_2 + \cdots + d_k = t$.

Proof Let $B \in S_n(t)$ and $t \neq 0$. Then $\frac{1}{t}B = A$ is a matrix as in Theorem B.

Thus the theorem follows from Theorem B with B = tA and $tc_i = d_i$. Let $B \in S_n(0)$. Consider $C = B + tI_n$, $t \neq 0$. It is clear that $C \in S_n(t)$ and hence C has an expression of the form $C = \sum d_i P_i$. We note that $C = B + tI_n$, $B = C - tI_n$ and the identity I_n is a permutation matrix. This proves the theorem.

We now consider the multiplicative semigroup $S_n(F)$. Let $P = (p_{ij})$ be a matrix defined by

$$P = \begin{bmatrix} 0 & 1 & 0 & 0 & 0 & \cdots & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & \cdots & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & \cdots & 0 & 0 \\ \vdots & \vdots & \ddots & \ddots & \ddots & \ddots & \ddots & \ddots \\ 0 & 0 & 0 & 0 & 0 & \cdots & 0 & 1 \\ 1 & 0 & 0 & 0 & 0 & \cdots & 0 & 0 \end{bmatrix}$$

 $(p_{ni}=1, p_{i,i+1}=1 \text{ for } i=1,2,\dots,n-1, \text{ and } p_{ij}=0 \text{ for all other } i \text{ and } j).$

Define $C_n(F) = \{ A \in S_n(F) : A = a_1 P^2 + a_2 P^2 + \dots + a_n P^n \}, (P^n = I_n).$

Theorem 3 $C_n(F)$ is a maximal commutative subsemigroup of the semigroup $S_n(F)$.

Proof It is clear that $C_n(F)$ is commutative. Suppose that $C_n(F)$ is not a maximal commutative subsemigroup of $S_n(F)$. Then there exists a commutative subsemigroup G of $S_n(F)$ such that $C_n(F) \subset G$ and $C_n(F) \neq G$. Let $A = (a_{ij}) \in G$ and $A \notin C_n(F)$. Then we must have that AP = PA. From this A takes the form $A = a_{12}P + a_{13}P^2 + \cdots + a_{1n}P^{n-1} + a_{ni}P^n$ which is a contradiction. This proves the theorem.

Let $J_n(t)$ be a matrix such that every entry of $J_n(t)$ is equal to t/n.

Theorem 4 Let $t \in F$ and $t \neq 0$. $S_n(t)$ has an algebra structure $\{S_n(t), \oplus S_n(t)\}$

 \bigotimes , \times under the following operations: $A \bigoplus B = A + B - J_n(t)$, $A \bigotimes B = AB - (t-1)J_n(t)$ and $a \times A = aA - (a-1)J_n(t)$, for A, $B \in S_n(t)$, $a \in \mathbb{F}$, where A + B, AB and aA are the usual matrix operations.

Proof We note that $AJ_n(t) = AJ_n(t)t = J_n(t)t$ and $J_n(t)B = J_n(t)t$. The rest are straightforward.

From Theorem 4 we can prove the following proposition. E(S) denotes the set of idempotents in a semigroup S.

Proposition The number of idempotents in $S_n(t)$ is equal to $\pi = |E(S_n(t))|$:

$$\pi = \sum_{r=1}^{n-1} \frac{(p^{n-1})}{(p^r)(p^{m-1-r})} + 1, \text{ where } p = |F| \text{ and } (p^m) = (p^m - 1)(p^m - p) \cdot \cdots \cdot (p^m - p^{m-1}).$$

Proof We show that $|E(S_n(t))| = |E(S_n(0))|$ for $t \neq 0$. Let A be a member of $S_n(t)$. Then there exists B in $S_n(0)$ such that $A = B + J_n(t)$. If B is idempotent, then $A \otimes A = BB + BJ_n(t) + J_n(t)B + J_n(t)J_n(t) - (t-1)J_n(t) = B + J_n(t) = A$. A similar argument shows that if A is idempotent then B is idempotent. We shall have in Lemma 2 that $S_n(0)$ and $M_{n-1}(F)$ are algebra-isomorphic. Now applying $\{6, Lamma 5\}$ we obtain that

$$|E(S_n(n))| = |E(M_{n-1}(F))| = \sum_{r=1}^{n-1} \frac{(p^{n-1})}{(p^r)(p^{n-1-r})} + 1,$$

(the last term 1 refers the zero matrix). This proves the proposition.

Lemma 2 (1) $S_n(F)$ and $E \bigoplus M_{n-1}(F)$ are algebra-isomorphic.(2) $S_n(0)$ and $M_{n-1}(F)$ are algebra isomorphic. $F \bigoplus M_{n-1}(F)$ denotes the direct sum of two algebras F and $M_{n-1}(F)$.

Proof This essentially follows from Theorem 1 and Corollary. (We proved it in [7] by the similar method in the proof of Theorem 1).

References

- (1) A. H. Clifford and G. B. Preston, The algebraic theory of semigroups, The Math. Surveys of AMS, Vol. 1(1962).
- [2] E. C. Johnsen, Essentially doubly stochastic matrices I. Elements of the theory over arbitrary fields, Linear Algebra and its applications, 4(1971), 255-282.
- [3] E. C. Johnsen, Essentially doubly stochastic matrices III. Products of elementary matrices, J. Linear and Multilinear Algebra 1-1(1973), 34-45.
- (4) E. C. Johnsen, Essentially stochstic matrices-Factorizations into elementary and quasi-elementa ary matrices, Linear Algebra and its Applications 17(1977), 79-93.
- (5) Jin Bai Kim, On essentially doubly stochastic matrices, Bulletin of the Malaysian Math. Soc. 2-1(1978), 119-123.
- (6) Jin Bai Kim, On the structures of linear semigroups, J. of Combinatorial Theory 11-1(1971), 62-71.
- [7] Jin Bai Kim, A matrix algebra motivated by essentially doubly stochastic matrices, Unpublished.
- [8] H.J.Ryser, Combinatorial Mathematics, Carus Math. Mono, No. 14, The Math. Association of America, 1963.