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Mairix Algebra Motivated by Essentially Stochastic Matrices”
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Abstract

A matrix of order » whose row sums are all equal to | is called an essenti-
ally stochastic matrix (see Johnsen [ 4]). We extend this notion as the following.
Let F be a field of characteristic 0 or a prime greater than n. M, (F) denctes
the set of ail nxn matrices over F. Let ¢ be an element of F. A matrix 4=(q;)
in M(F) is called essentially r-stochastic’ provided its row sums are each equal
to r. We dencte by R (i) the set of ali essentially r-stochastic mairices over F.

We shall mainly study R, (0) and R (F) = [ R(r). Our main references are
t€F

Johnson [2,4) and Kim {5].
i. introduction Raview Let F be a fieid of characteristic {§ or a prime

greaier than n. We denote the set of all » x n matrices over ¥ by M (F). For

1€F, we denote by R (1) the set of all matrices A= (a,;;) of order n in M(F)

such that Za,»j:t. Any A in R (¢) will be cailed an essentially s-stochastic
i=t

matrix. We shall study R(F)= |JR,s) (which is a multiplicative semigroup).
t€F

We review papers. Johnsen { 4] studied R,( 1) and proved that any matnx A4
in R, (1) is a product of at most ¢g{n) elementary matrices in R, (1), where
¢(x) 13 a quadratic poiyvnemial in x when F#GF( 2). Johnsen alsc established
a similar result for F=GF(2). For AEM(F), AT denotes the transpose of A.
Define L3 ={A"t AER (1)} and SL) =R, NLL). Any matrix in S 1) is cali-
ed an essentially doubly stochastic matrix. In { 2], Johnsen proved that S,(1)
has an algebra stiucture {S,(1), @, &, X} when the matrix sum € is defined
by ABPB=4+53-J,, & is defined by AXB= AB (the usual matrix product) and
a scalar multiplication ax 4 is dedfined by aXx A=ad+{1-a)J, fer 4, BES, (1),
for a€F and where J, is the matrix with every entry of J, is equal to i/n.
Johnsen [ 2} proved that §,( 1) is algebra-isomorphic to M, (F).
Let M, ={4=(a;YeEM (F)ra,; =a;, =+ =a, = 0. We shall show that R (F)
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is algebra-isomorphic onto M,. We shall generalize the foilowing well known resuii.

Theorem A . (See Theorem 5.4(8,p.58)). Let A be a doubly stochastic ma
trix of order . Then A=c¢ P, +¢,P, 4+, Py, Where P; arc permutation matri
ces and the ¢; are positive reals such that ¢y +c, + 00, = 1. We shall compute
the number of idempotents in the set S (r).

2. R,F). We begin with the following lemma.

Lemma | Under the usual matrix operations, R,(0) and R(F) are algeb
ras over F.

Proof Let s, t€F. Let 4€R,(s) and BER (). Then we can see that A+ B¢
Rs*1)y, ABER (s1) and rA€R (rs). This proves the lemma.

We define M ={A=(a;) EM (F)ia; =0 for i=2,3,+,n} and M,={A=(a;) €
MAFY a;, = 0 for all i}. We shall prove the following theorem.

Theorem | (1) R(F) and M, are algebra-isomorphic. (2) RL0) and M,
are algebra-isomorphic. .« 3) R,(0) is an ideal of R,(F) and the quotien algebra
algebra R (F)/R (0) is isomorphic onto F. .

Proof (1) We define a non-singular matrix X ={(x;» €M (F) by

1 1 1 ! I . . 1 1 t
-1 6 0 0 - . 0 o6 0
o -1 1 o 0 - 6 0 0
X: . s = ° ° . © . - ) .

- . ° ° - . ) . . .

6 0 o o6 o0 - -1 1 0
6 o6 o0 o6 o - . 0 -1 1

(x;7 1 =xyy xjq,;= —1 and x,;= 0 for ail other i and j). Let Xﬁl:)/:(y‘,).

Then we can see that:

1 -1 =2 (-3 --4H -3 -2 -1
n n n n n n n n
|
1 1 —(n-2) —(n-®» (- 3 -2 -l
n n n n n n R ;
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(yy=d/n yvp=G-D/nG#, yy=((-/nG>j and i>Z, and y,;= ~(n~j+ 1D/
r(j . iy). Letting XAY =D=1(d,;)), (A€R 1)), we see that ¢, =0 for izl, and
hence DEM,. We define dy by ¢(A) = XAY(AER (1)), We sce that ¢ AR) =
Dy(AOEB)Y, d(A+BY=d (A ¢ (B and d(ad) =c¢d, (A for A, B in R(F) and
a in F. Tt is clear that ¢, is one-10-one. We shall show that the mapping sy
is onto.

Let C=(c;) €M, and ¢;, =r£0 . Consider YCX =D=(d,;;). We can compute
the following 4 .

!

1
dH:TI-(I—cn+ Z (n - /()C/m,z)*
! k=1

n-1

dlj:%(f+6‘1j—f1.ju_ Z(”'k)(ck%.j“C;‘:+l,j+1)) y @<j<n- 1),

k=1
1 n—| N
dln:_n—(t+(71n+Z(n_k)ck+l,n} 0
k=1

i n- 1
dy=r(1=cry S(k=Dep+ _(n-kewms) . (G>2),
k=2 k=i

1 i . n—l‘
du:?<f+clj‘01,,~+1+ Z(k_l)(ckj_(«‘k,ju)" Z(n_k)(ck':.jwckd,j*l))
k=2 k=i
(iz22,0~ 122222 ,
1 & =
di”:—’;(t+c,ﬂ+k‘2_d2(k~ l)ck,,—‘};(n—k)ck“,,,) s (i.>2)
. n-1 n—1
Therefore we obtain that 4,, + Zdl,+d,,,:t and d, + Zdij+ci,ﬂ:t. (i=>2).
i=2 i=2

Thus YCX = DER1), and hence ¢xR (F)=M,. This proves (1). )

From the preceding argument it follows that #,R,(0) =M, and hencc R, (0)
is algebra-isomorphic onto M,;. We consider (3). Let I, be the identity of
M, (F). Then we can show that R, () =r],+R,(0). From this we can obtain that
RADR (D =L+ R A0 DCQL+R L0 =511, +R(0), Ry +R(D=G+DIL,+R0)=
RAs+1) and aR, (N =(a)1,+RL0)=R (at). (See the proof of Lemma 1). There-
fore we proved that R,(0) is an ideal of R (F) and the quotient algebra .R,(F)/
R,(01) is isomorphic onto F. This proves ( 3) and we proved the theorem 1.

We recall that L()={A4= (a'“.) eEM () }31%:[ for all j}. Let L (F) = lgFL,(t),
Define N, ={A4=(a;) EM(F):a,;= 0 for 2<j<{n} and N;={4=(a;;)€N;ta,; = 0}.
We have the following.

Coroliary (1) L(F) and N, are algebra-isomorphic. (2) L,(0) and N,
are algebra-isomorphic. ( 3) L0) is an ideal of L (F). L{F)/L(g) is isomorp-
hic to F. ’
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Prgof Let X be the matrix defined in the proof of Theorem 1,For A= B'¢
L(0), define a mapping éx by o¢x(A =Y"AX "= Z74Z=(XBX )T, where Z=X"
and ¥=X"". From Theorem 1 with this mapping the corollary follows,

Mete ¢ is an eigenvalue of A€ER, (7).

3 Some Additional Results In (5] we proved the fcllowing theorem.
Theorem B If 4 is an essentially doubly stochastic matrix (A4€S,( 1)),
then A=c Py +c,Py+ e+, Fy, where the P, are permutation matrices and the ¢,

are constants in F such ihat ¢, +c; 4+ eeotp= 1.

From Theorem B we have the following

Theovrem £ Let BES,(r) be an essentially doubly r-stochastic matrix, Then
B=d,P, +d,P,+e-+d; P, where the P, are permutaiion’ matrices and d, are cons-
tants in F such that d, +d,++d, =1,

Proof Let Be€S (1) and r# 0. Then %B:A is a2 matrix as in Theorem B.

Thus the theorem follows from Theorem B with 8=:i4 and rc,=4d,. Let BES(1n),
Consider C=B+¢l,, t5#0. Ii is clear that C€S,(#) and hence C has an express-
ion of the form C=ZXd,P,. We note that C=B+¢l,, B=C -1/, and the identity
I, is a permutation matrix. This proves the theorsm.

We now consider the multiplicative semigroup S (F;. Let P={p;;) be a mat-

rix defined by

0 r 06 0 0 . 0 0
0 6 1 0 0 - 0 O
6 0 ¢ 1 0 e 0 0
P=1 e . . . s w0e e .

0 0 ) 0 O ees G 1
1 0 0 0 O = 9 9
Pw= 1, piy=1 for i=1,2,,n~ 1,and p;=0 for all other i and j).
Define C(F) ={AES(F): A=a,PH a,P + e +a,P"}, (P"=1,).
Theosrem 3 C,(F) is a maximal comimutative subsemigroup of the semigr-
oup S,(F).

Proof It is clear that C(F) is cominutative. Suppose that C,(F) is not a

maximal commutative subsemigroup of 5,(F). Then there exisis a cominutative

subsemigroup G of S(F) such that C(F) CG and C(F)#G. Let 4= (a;;) €G and

A¢C(F). Then ws must have that AP = PA. Froin this 4 takes the form A=

a;:P+a PP+ e +a,P"" +a,P" which is a contrabiction. This proves the theorem.
let J (1) be a mairix such that every entry of J.:) is equal to 1/n.

Theorem 4 Let r€F and r5=0 . S,(¢) has an aigebra structure {S5Lr), D,
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®, x; under the following operations; APB= A+B-J (1), AQB=A4AB—- (- 1)J (D
and ax A=ad-(a—-1JLD), for A4, BES(y), ac¥F, where 4+ B, AB and aA are
the usual matrix operations.
Proof We note that AJ (D= AJ(IDHit=J L)1 and J ()B=J,(1)t. The rest
are straightforward.
From Theorem 4 we can prove the fclilowing proposition. E(S) denotes the
set of idempotents in a semigroup S.
Proposition The number of idempotents in 5,(z) is equal to 7= [E(S,,(t))L
) n—21 [pﬁ_]l_
ST I
Proof We show that lE(S,,(t))]rlE(S,,(O ))[ for 10 . Let 4 be a member
of S (). Then there exists B in 8,(0) such that A=B+J, (). If B is idempotent,
then AQA=BB+BJ L) +JL)B+I (DI ()~ (—-1DiL)=B+J,(t)=A. A similar
argument shows that if A4 is idempotent then B is idempotent. We shall have in

+1, where p=|F|and (p"I=G"-D@"=p) (P -p"").

Lemma 2 that S0 ) and M, (F) are algebra-isomorphic. Now applying (6,
Lamma 5] we obtain that
IEGSC0)] =| EMua(F0) [= Y L2
1 (P
(the last term ! refers the zero mairix). This proveds the proposition.

Lemma 2 (1) S(F) and EPM,(F) are algebra-isomorphic.(2) S,(0)
and M, (F) are algebra isomorphic , FPM, ((F) denotes the direct sum of two
aigebras F ad M, (F).

Proof This essentially foliows from Theorem 1 and Corollary. (We proved
it in {73 by the similar method in the proof of Theorem 1).

+1,
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