Left H-rings Whose Radicals Are Not Periodic*

Wang Chengde (王成德)

(Beijing Institute of Technology)

An associative ring (algebra) in which every subring (subalgebra) is a left ideal is called a left H-ring (left H-algebra). In (1), left H algebras are charcterized and the problem to characterize left H-rings is proposed. In this paper, we characterize left H-rings whose radicals are not periodic.

Let R and R' be two rings. If R is isomorphic to R' we write R = R'. The direct sum of R and R' is denoted by R \oplus R'. The direct sum of the The additive groups of R and R' is denoted by R + R'. If the additive group of R is periodic we call R a periodic ring. For $x \in \mathbb{R}$, the additive subgroup of R generated by x is denoted by $\{x\}$ and its order is denoted by o(x).

The result of this paper is the following:

Theorem. Suppose R is a ring and its nil radical is not a nonzero pe periodic ring. Then R is a left H-ring if and only if one of the following conditions holds.

- (1) $R = \sum_{p_i \in I} \bigoplus F_{p_i}$ where F_{p_i} is the prime field of order p_i and I is a set of some primes.
 - (2) $R = \{r_0\}$ where $o(r_0) = \infty$, $r_0^2 = nr_0$, n is a nonzero integer.
 - (3) $R = R_1 \oplus \sum_{p_i \in I} \oplus F_{p_i}$ where $R_1 = \{r_0\}$, $o(r_0) = \infty$, $r_0^2 = nr_0$, $n \neq 0$ is an in-

teger. F_{p_i} is the prime field of order p_i and I is a set of some primes which divides n.

- (4) $\mathbf{R} = \sum_{q_j \in \mathbf{J}} \mathbf{R}_{q_j}$ where each \mathbf{R}_{q_j} is an ideal of \mathbf{R} and $\mathbf{R}_{q_i} \mathbf{R}_{q_j} = 0$ for $q_i \neq q_j$ and ${\bf J}$ is a set of some primes. Let ${\bf N}_{q_i}$ be the annihilator of ${\bf R}_{q_i}$, then each R_q satisfies one of the following conditions.
 - (a) $\mathbf{R}_{q_i} = \mathbf{N}_{q_i}$;

 - (b) $\mathbf{R}_{q_j} = \{a\} + \mathbf{N}_{q_j}$ where $q_j a$, $a^2 \in \mathbf{N}_{q_j}$ and $o(a^2) = q_j$; (c) $\mathbf{R}_{q_j} = \{a, b\} + \mathbf{N}_{q_j}$ where $q_j a$, $q_j b$, $a^2 \in \mathbf{N}_{q_j}$, $o(a^2) = q_j$ and there are i * Received Feb. 13, 1987. -- 106 --

only small c_1 , c_2 and big b_1 , b_2 , as shown in (5), but also small a_1 , a_2 , D_1 , D_2 , β_1 , β_2^* and big β_1^* , β_2 can ensure the global stability.

References

- [1] J. M. Mahaffy and C. V. Pao, Models of genetic control by repression with time delays and spatial effects, J. Math. Biology, 20(1984), 39-57.
- [2] C. V. Pao and J. M. Mahaffy, Qualitative analysis of a coupled reaction-diffusion model in biology with time delays, J. Math. Anal. Appl., 109 (1985), 355-371.

(from 106)

integers n, m, m' such that $b^2 = na^2$, $ab = ma^2$, $ba = m'a^2$ and for which the congruence equation $X^2 + (m + m')X + n \equiv 0 \pmod{q_j}$ has no integer solution X.

- (5) $\mathbf{R} = \mathbf{P} \oplus \mathbf{K}$ where $\mathbf{P} = \sum_{p_i \in \mathbf{I}} \oplus \mathbf{F}_{p_i}$ satisfies (1) and $\mathbf{K} = \sum_{q_i \in \mathbf{I}} \mathbf{R}_{q_i}$ satisfies (4).
- (6) $R = K + R_1$ where $K = \sum_{q_i \in J} R_{q_j}$ satisfies (4) and $R_1 = \{r_0\}$, $o(r_0) = \infty$, $r_0^2 = nr_0$ for $n \neq 0$. For each element x of K, $xr_0 = 0$, $r_0x = nx$.
- (7) $\mathbf{R} = \mathbf{K} + \mathbf{A}$, where $\mathbf{K} = \sum_{q_j \in \mathbf{I}} \mathbf{R} q_j$ satisfies (4) and $\mathbf{A} = \mathbf{R}_1 \oplus \sum_{p_i \in \mathbf{I}} \oplus \mathbf{F}_{p_i}$ satisfies (3), $\mathbf{R}_1 = \{r_0\}$, $o(r_0) = \infty$, $r_0^2 = nr_0$. For each $x \in \mathbf{K}$, $r_0 x = nx$, and for each $x \in \mathbf{K}$, $a \in \mathbf{A}$, $b \in \sum_{p_i \in \mathbf{I}} \oplus \mathbf{F}_{p_i}$, xa = 0, bx = 0.

Reference

[1] Liu Shaoxue, J.Beijing Normal Univ. (natural sci.), 1979, no. 3,1-6.