Some Notes on a Minimization Problem*

Shi Ying Guang (史应光)

(Computing Center, Chinese Academy of Sciences)

Abstract

Let $X \subset [a, b]$ be a compact set containing at least n+1 points and K an n-dimensional Haar subspace in c[a, b]. Let F(x, y) be a nonnegative function, defined on $X \times (-\infty, \infty)$, satisfying $||F(\cdot, p)|| < \infty$ with the L_{∞} norm for some $s \in K$, where $F(x, p) \equiv F(x, p(x))$.

The minimization problem discussed in this paper is to find an element $p \in K$ such that $||F(\cdot, p)|| = \inf ||F(\cdot, q)||$, such an element p(if any) is said to be a minimum to F in K.

The author in [1,2] studied this problem and has given the main theorems in the Chebyshev theory under the following assumptions:

(A)
$$\lim_{\|y\|\to\infty} F(x,y) = \infty$$
, $\forall x \in X$; (B) $\lim_{\substack{y\to y \ y \neq y}} F(x,y) = F(x,y)$, $\forall x \in X$, $\forall y$; (C) $\lim_{\substack{y\to y \ y \neq y}} F(u,y) = F(x,y)$, $\forall x \in X$, $\forall y$; (D) For each $x \in X$ there exist

two real numbers f'(x) and f'(x), $f'(x) \le f'(x)$, such that F(x, y) is strictly decreasing with respect to y on $(-\infty, f'(x)]$ and strictly increasing on $[f'(x), \infty)$, and $F(x, y) = F^*(x) := \inf_{x \in \mathcal{X}} F(x, y)$ on [f'(x), f'(x)].

Denote $f_1(x) = \inf\{y: F(x, y) \le ||F^*||\}, f_2(x) = \sup\{y: F(x, y) \le ||F^*||\},$ $\overline{f_1(x)} = \overline{\lim}_{x \to x} f_1(u), \overline{f_2(x)} = \lim_{x \to x} f_2(u), G = \{q \in K: f_1 \le q \le f_2\}.$ For $p \in K$ set $X_p = \{x \in X: F(x, p) = ||F(\cdot, p)||\}, \overline{X}_+ = \{x \in X_p: p(x) \le f^-(x)\},$ $\overline{X}_- = \{x \in X_p: p(x) \ge f^+(x)\}, X_0 = \{x \in X_p: f^-(x) \le p(x) \le f^+(x)\},$

$$\sigma(x) = \left\{ \begin{array}{c} 1, & x \in \overline{X}_{+} \\ -1, & \epsilon \overline{X} \end{array} \right.$$

A system of n+1 ordered points $x_1 < x_2 < \cdots < x_{n+1}$ in $\overline{X}_+ \cup \overline{X}_-$ is said to be a generalized alternation system, if it satisfies $\sigma(x_{i+1}) = -\sigma(x_i)$, $i = 1, \dots, n$.

Theorem | Let $p \in K$. Then the following statements are equivalent: (a) $X_0 \neq \phi$; (b) $p \in G$; (c) $||F(\cdot, p)|| = ||F^*||$. Moreover, each of them implies that p is a minimum to F.

Theorem 2 Let $p \in K$. Then the following statements are equivalent:

(to 265)

^{*}Received July 10, 1985.