A Claas of Generalized Stirling Transforms*

L.C. Hsu(徐利治)

(Dalian University of Technology)

Here announced is an extension of the basic result presented in my former note (cf. The Fibonacci Quarterly, 4 (1987), 346-351).

Denote by Γ the ring of formal power series. Two elements φ and ψ are called reciprocal elements if $\varphi(\psi(t)) = \psi(\varphi(t)) = t$ with $\varphi(0) = \psi(0) = 0$.

Definition I A sequence of polynomials $\{p_n(t)\}$ is said to be normal if deg $p_n(t) = n$, $p_0(t) = 1$ and $p_n(0) = 0$, $(n \ge 1)$.

Definition 2 A linear operator P is called a fundamental operator associated with the given normal sequence $\{p_n(t)\}$ if $\mathbf{P}p_0(t)=0$. $\mathbf{P}p_n(t)\models np_{n-1}(t)$, $(n\geq 1)$ and if for any given formal series $\sum_{0}^{\infty}c_kp_k(t)$ we have $\mathbf{P}\sum_{0}^{\infty}c_kp_k(t)=\sum_{0}^{\infty}c_kp_k(t)$.

Inversion Theorem Let $\{p_n(t)\}$ and $\{q_n(t)\}$ be two normal sequences of polynomials associating with fundamental operators P and Q respectively. Then we have the following pair of generalized Stirling reciprocal transforms

$$y_n = \sum_{k \ge 0} \frac{1}{k!} \left(\mathbf{Q}^k p_n \left(\varphi \left(t \right) \right) \right)_{t = 0} x_k \tag{1}$$

$$x_{n} = \sum_{k \geq 0} \frac{1}{k!} \left(\mathbf{P}^{k} q_{n} (\psi (t)) \right)_{t=0} y_{k}$$
 (2)

if and only if φ and ψ are reciprocal elements of Γ , where either $\{x_n\}$ or $\{y_n\}$ is an arbitrary finite sequence of variables.

There is also a rotated form for the reciprocal relations (1) and (2), namely the letters k and n appearing in the summation kernels may be interchanged. The theorem implies a variety of interesting special cases. The simple case given by $\varphi(t) = \psi(t) = t$, $p_n(t) = t^n$, $q_n(t) = [t]_n$, P = D, $Q = \triangle$ (differencing) just gives the classical Stirling transforms.

^{*} Received May 30, 1988.