P₁-Compact Mappings and Leary-Schauder Boundary Condition

Ding Xie ping
(Sichuan Normal University, Chengdu)

Let X be a Banach space and let $\Gamma_a = \{X_n, P_n\}$ be a projectionally complete scheme. Let D be a bounded open subset of X and $T : \overline{D} \rightarrow X$ an P_1 compact mapping under the condition weaker than Leary Schauder boundary condition, we show several fixed point theorems of T and consider the relation between the fixed points and eigenvectors of T.

For $H \subset \overline{D}$, we write $E_H = \{\lambda > 1 : Tx = \lambda x \text{ for some } x \in H\}$.

Theorem 1 Let $T: \overline{D} \rightarrow X$ be a bounded continuous P_1 compact mapping and $0 \in D$ such that

- (i) $\lambda = E_{OD} \rightarrow E_{\overline{D}} = (1 + \lambda) \neq 1$.
- (ii) $\lambda I \cdot T$ is locally one to one for $\lambda \geq 1$.

Then T has a fixed point in \overline{D} .

Theorem 2 Let X be an Π_1 Space and let $T: \overline{D} \to X$ be an 1 ball contraction with 0 D such that the conditions (i) and (ii) of Theorem 1 hold. If $(I-T)(\overline{D})$ is closed in X, the T has a fixed point in \overline{D} .

Corollary I Let X be an Π_1 Space and D a bounded open subset of X with 0 D. A: $X \rightarrow X$ is bounded continuous accretive map, $F: \overline{D} \rightarrow X$ is ball-condensing and $C: \overline{D} \rightarrow X$ is compact. If T = F + C - A satisfies the conditions (i) and (ii) of Theorem 1, the T has fixed point in \overline{D} .

In the following, we assume that $T: X \to X$ is a bounded continuous P_1 —compact map such that $\lambda I - T$ is locally one-to-one for $\lambda \ge 1$. Write $E^- = \{\lambda \ge 1: Tx = \lambda x \text{ for some } x = X\}$ and $E = \{x_{\lambda}; \lambda \in E^-, Tx_{\lambda} = \lambda x_{\lambda}\}$. Under the above assumptions, we show that E^- is open in $\{1, \infty\}$; the map $\psi: E^- \to E$ defined by $\psi(\lambda) = x_{\lambda}$ is continuous and the following theorems.

Theorem 3 Under the above assumptions, T has a fixed point in X if and only if $\lim_{x \to \infty} \inf \|x_{\lambda}\| < \infty$ where $\lambda_0 = \inf E^+$.

Theorem 4 Under the above assumptions, if $Tx \neq x$ for all $x \in X$, then ea each eigenvector $x \in E$ lies in an unbounded component of E. (to (2.5))

^{*} Received Jun. 2, 1987. Projects Supported by the Science Fund of the Chinese Academy of Sciences.